
ROBOTICS

Application manual
Continuous Application Platform

Trace back information:
Workspace 24A version a8
Checked in 2024-02-26
Skribenta version 5.5.019

Application manual
Continuous Application Platform

RobotWare 7.14

Document ID: 3HAC083246-001
Revision: C

© Copyright 2022-2024 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2022-2024 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...

91 Continuous Application Platform

112 Functionality of CAP
122.1 Robot movement ...
142.2 Supervision ..
182.3 Supervision and process phases ..
202.4 Motion delay ..
212.5 Programming recommendations ..
222.6 Program execution ..
232.7 Predefined events ...
242.8 Coupling between phases and events ...
262.9 Error handling ...
272.9.1 Recoverable errors ..
322.10 Restart ..
342.11 System event routines ..
352.12 Limitations ...

373 Programming examples
373.1 Laser cutting example ..
383.2 Step by step ...

414 RAPID references
414.1 Instructions ..
414.1.1 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals ..

44
4.1.2 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output

signals ..

47
4.1.3 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent

variables ..
504.1.4 CapC - Circular CAP movement instruction ..
614.1.5 CapEquiDist - Generate equidistant event ..
634.1.6 CapInitSupervision - Reset all supervision for CAP ..
644.1.7 CapL - Linear CAP movement instruction ...
744.1.8 CapNoProcess - Run CAP without process ..
764.1.9 CapRefresh - Refresh CAP data ...
784.1.10 CapRemoveSupervision - Remove condition for one signal
804.1.11 CapSetDOAtStop - Set a digital output signal at TCP stop
824.1.12 CapSetupSupervision - Setup conditions for signal supervision in CAP
854.1.13 CapWeaveSync - set up signals and levels for weave synchronization
884.1.14 ICap - connect CAP events to trap routines ..
934.1.15 ICapPathPos - Get center line robtarget when weaving
954.2 Functions ..
954.2.1 CapGetFailSigs - Get failed I/O signals ..
974.3 Data types ...
974.3.1 capaptrreferencedata - Variable setup data for At-Point-Tracker
994.3.2 capdata - CAP data ..

1024.3.3 capspeeddata - Speed data for CAP ...
1034.3.4 capweavedata - Weavedata for CAP ...
1094.3.5 flypointdata - Data for flying start/end ..
1124.3.6 processtimes - process times ..
1134.3.7 restartblkdata - blockdata for restart ...
1154.3.8 supervtimeouts - Handshake supervision time outs
1174.3.9 weavestartdata - weave start data ..

119Index

Application manual - Continuous Application Platform 5
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

Table of contents

This page is intentionally left blank

Overview of this manual
About this manual

This manual describes the option Continuous Application Platform and contains
instructions for the configuration.
This manual describes RobotWare 7.

Who should read this manual?
This manual is intended for:

• Personnel responsible for installations and configurations of robot application
software

• Personnel responsible for robot system configuration
• System integrators

Prerequisites
The reader should have the required knowledge of:

• System parameter configuration
• RAPID programming

References

Document IDReferences

3HAC066554-001Application manual - Controller software OmniCore

3HAC065038-001Technical referencemanual - RAPID Instructions, Functions
and Data types

3HAC065040-001Technical reference manual - RAPID Overview

Revisions

DescriptionRevision

Released with RobotWare 7.7.A

Released with RobotWare 7.10.
• New instructions added: CapAPTrSetupAI - Setup an At-Point-Tracker

controlled by analog input signals on page41,CapAPTrSetupAO - Setup
an At-Point-Tracker controlled by analog output signals on page 44,
CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent
variables on page 47, ICapPathPos - Get center line robtarget when
weaving on page 93.

• New data type added: capaptrreferencedata - Variable setup data for
At-Point-Tracker on page 97.

• Corrected graphics.

B

Released with RobotWare 7.14.
• Added optional argument Deactivate on the instruction

CapRemoveSupervision.
• Minor corrections.

C

Application manual - Continuous Application Platform 7
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

Overview of this manual

This page is intentionally left blank

1 Continuous Application Platform
Introduction

The Continuous Application Platform (CAP) consists of a number of RAPID
instructions and data types that make development of continuous applications
easier, faster, and more robust.
The basic idea of CAP is to separate synchronization of the robot movement from
control of the application process. CAP provides a toolbox for movement
synchronization, which is used by the application layer in RAPID to control the
application process. By this, two things are achieved:

• The CAP core is robust and generic.
• The application layer is easy to customize.

CAP offers subscription of a variety of process events (ICap) that the application
builder will use in the application layer to synchronize the application process to
the robot movement.

Limitations
The first version of CAP for RobotWare 7 does not support MultiMove. Therefore
MultiMove related argument in CAP instructions -e.g. \Id, \Track, etc - cannot be
used. Support will be made available when OmniCore hardware for MultiMove is
available.

Application manual - Continuous Application Platform 9
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

1 Continuous Application Platform

This page is intentionally left blank

2 Functionality of CAP
Description of CAP

With CAP it is possible to synchronize a continuous application process with the
TCP movement of a robot.
The synchronization between robot movement and application layer is handled
via predefined RAPID events. These events trigger trap routines in RAPID
(Predefined events on page 23), where the application builder implements the
RAPID code to control the application process.
CAP enables the RAPID user to order supervision of I/O signals depending on the
TCP movement of the robot (Supervision on page 14).
For synchronization of movement and process, the process is divided into different
phases. For every process phase CAP can supervise a number of digital I/O signals
(Process phases on page 12).

xx1200000163

Continues on next page
Application manual - Continuous Application Platform 11
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP

2.1 Robot movement

Instructions and TCP movement
A CAP movement instruction (CapL or CapC) is similar to other movement
instructions (for example, MoveL, TriggL). Compared to the TriggL instruction
it contains also the information necessary for CAP. That information is given through
the arguments Cdata, Weavestart and Weave.
The motion synchronization is handled by the CAP process - there is one process
for each RAPID task that controls a robot, which uses CAP in its application. This
CAP process is active over several CAP movement instructions from the first
instruction (Cdata.first_instr = TRUE)) to the last instruction
(Cdata.last_instr = TRUE) see capdata - CAP data on page 99.

CapL ToPoint[\Id] Speed Cdata [\MoveStartTimer] Weavestart Weave
Zone [\Inpos] Tool [\WObj] [\Corr] [\Time] [\T1] [\TriggArray]

Process control data Data to define weave
start behavior

Weaving data

Arguments that differ from the TriggL instruction are in bold

[\T2] [\T3] [\T4] [\T5] [\T6] [\T7] [\T8] [\TLoad]

Set max time between
process start and
movement start

xx2300000231

During continuous execution the robot movement speed with active application
process is defined by Cdata.speed_data. For step-wise execution (forward or
backward) the robot movement speed is defined by Speed - CAP will in this case
automatically inhibit the application process.
For more information on programming CAP movement instructions see
Programming examples on page 37.

Process phases
CAP provides four different process phases. The application builder uses these
phases to synchronize the robot movement with the application process:

• PRE
• MAIN
• POST1
• POST2

Each process phases has associated supervision lists for I/O signal supervision
(Supervision on page 14).

Continues on next page
12 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.1 Robot movement

During the application process phases CAP generates a number of events that the
application builder connects to RAPID TRAP routines in the application layer. These
TRAP routines contain application code to control the application process.

Application manual - Continuous Application Platform 13
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.1 Robot movement

Continued

2.2 Supervision

Introduction to supervision
CAP supervises I/O signals during execution of the application process and
generates supervision errors if any of the supervised signal fails.
Supervision is set up from the RAPID application level, see CapSetupSupervision
- Setup conditions for signal supervision in CAP on page 82.

Supervision phases
There are two different types of supervision phases:

• Handshake supervision.
• Status supervision.

As mentioned in Process phases on page 12, the CAP application process is
divided into four process phases. Each of those phases has three supervision
phases:

End handshake super-
vision phase

Status supervision
phase

Start handshake super-
vision phase

Process phase

END_PREPRESTART_PREPRE

END_MAINMAINSTART_MAINMAIN

END_POST1POST1START_POST1POST1

END_POST2POST2START_POST2POST2

Handshake supervision
There is one handshake supervision phase prior to each status supervision phase
to insure the start conditions, and another handshake supervision phase after to
insure the end conditions.
It is possible to specify a time-out for handshake supervisions. If a time-out is
specified and expires before all supervision conditions are fulfilled, an ERROR is
generated. The time-out can also be set to last forever, that is, the CAP process
will be waiting for all supervision requests to be fulfilled. The time-out times are

Continues on next page
14 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.2 Supervision

specified in supervtimeouts which is part of the capdata. If no handshake
supervision is set up that phase is skipped.

xx2300000243

These are the handshake supervision phases.
• START_PRE
• END_PRE
• START_MAIN
• END_MAIN
• START_POST1
• END_POST1
• START_POST2
• END_POST2

Continues on next page
Application manual - Continuous Application Platform 15
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.2 Supervision

Continued

Status supervision
For status supervision phases all conditions that the application builder specified
for it (CapSetupSupervision) are supervised (see figure below).

xx2300000244

The component proc_times in capdata defines the duration of the process
phases PRE, POST1, and POST2. If supervision is requested during any of these
phases, the duration time for each phase must be bigger than zero; otherwise the
supervision will fail. No time has to be specified for the MAIN phase, because this
time is defined by the movement of the robot.
These are the status supervision phases.

• PRE
• MAIN
• POST1
• POST2

Continues on next page
16 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.2 Supervision
Continued

xx2300000232

Application manual - Continuous Application Platform 17
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.2 Supervision

Continued

2.3 Supervision and process phases

Phases
The process phases PRE, POST1, and POST2 are common to one single CAP
process path, that is:

• the first CAP instruction that starts or restarts the CAP process is the only
one that has a PRE supervision phase. At restart the presence of this phase
depends on the setting of pre_phase in the data type restartblkdata. See
restartblkdata - blockdata for restart on page 113.

• the last CAP instruction (last_instr = TRUE in capdata) that terminates
the CAP process, is the only one that has the phases POST1 and POST2.
See capdata - CAP data on page 99.

PRE phase
When the robot reaches the start point of the path, all conditions in the START_PRE
supervision list must be fulfilled before the application process can enter the status
supervision phase PRE. If a time-out is specified and the conditions cannot be met
within that time, the application process is stopped, and an error is sent.
During the PRE phase all conditions defined in the PRE supervision list must be
fulfilled. If some of these conditions fail, the application process is stopped and an
error message is sent.
After the PRE phase all conditions in the END_PRE supervision list must be fulfilled
before the application process can end the PRE process phase. If a time-out is
specified and the conditions cannot bemet within that time, the application process
is stopped, and an error is sent.
When using flying start this phase will not be available, but the duration time can
be used to create an ignition delay.

Summary
• Starts when all conditions in the START_PRE supervision list are met.
• Supervised by the PRE supervision list.
• Ends when all conditions in the END_PRE supervision list are met.

MAIN phase
All conditions in the START_MAIN supervision list must be fulfilled before the
application process can enter the status supervision phase MAIN. If a time-out is
specified and the conditions cannot bemet within that time, the application process
is stopped, and an error is sent.
During the MAIN phase all conditions defined in the MAIN supervision list must be
fulfilled. If some of these conditions fail, the application process is stopped and an
error message is sent.

Continues on next page
18 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.3 Supervision and process phases

All conditions in the END_MAIN supervision list must be fulfilled before the
application process can end the MAIN process phase. If the conditions cannot be
met within that time, the application process is stopped, and an error is sent.

Summary
• Starts when all conditions in the START_MAIN supervision list are met.
• Supervised by the MAIN supervision list.
• Ends when all conditions in the END_MAIN supervision list are met.

POST1 phase
All conditions in the START_POST1 supervision list must be fulfilled for the
application process to be allowed to enter the POST1 status supervision phase. If
a time-out is specified for START_POST1 and the conditions cannot be met within
that time, the application process is stopped, and an error is sent.
During the POST1 phase all conditions defined in the POST1 supervision list must
be fulfilled. If some of these conditions fail, the application process is stopped and
an error message is sent.
All conditions in the END_POST1 supervision list must be fulfilled for the application
process to end the POST1 process phase. If the conditions cannot be met within
that time, the application process is stopped, and an error is sent.
This phase is not available for flying start.

Summary
• Starts when all conditions in the START_POST1 supervision list are met.
• Supervised by the POST1 supervision list.
• Ends when all conditions in the END_POST1 supervision list are met.

POST2 phase
All conditions in the START_POST2 supervision list must be fulfilled for the
application process to be allowed to enter the POST2 status supervision phase. If
a time-out is specified for START_POST2 and the conditions cannot be met within
that time, the application process is stopped, and an error is sent.
During the POST2 phase all conditions defined in the POST2 supervision list must
be fulfilled for the application process to end the POST2 process phase, i.e. to end
the CAP process. If some of these conditions fail, the application process is stopped
and an error message is sent.
This phase is not available for flying start.

Summary
• Starts when all conditions in the START_POST2 supervision list are met.
• Supervised by the POST2 supervision list.
• Ends when all conditions in the END_POST2 supervision list are met.

Application manual - Continuous Application Platform 19
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.3 Supervision and process phases

Continued

2.4 Motion delay

Description
Motion delay gives the user the possibility to delay the start of the robot movement.
This can be used for example with laser cutting, where the movement must not be
started before the material has been penetrated. The time for the motion delay is
specified in capspeeddata. See capspeeddata - Speed data for CAP on page102.
This functionality is not available for flying start.

20 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.4 Motion delay

2.5 Programming recommendations

Corner zones
A sequence of CAP movement instructions shall have corner zones (for example,
z10) on the path.
For example:

MoveL p10,v100,fine,tool;

CapL p20,v50,cdata,nowvst,nowv,z20,tool;

CapC p30,p40,v50,cdata,nowvst,nowv,z20,tool;

CapL p50,v50,cdata,nowvst,nowv,z20,tool;

CapL p60,v50,cdata,nowvst,nowv,fine,tool;

MoveL p70,v100,fine,tool;

If the last movement instruction before the first CAP instruction in a sequence
starts from a corner zone, CAP will start the application process with a flying start.
If the last instruction of a sequence of CAP instructions ends in a corner zone,
CAP will end the application process with a flying end.
Within a sequence of CAP instructions, avoid logical instructions that take long
time. That may cause error 50024 Corner path failure and 110013 Application
process interrupted, which means that a corner zone is converted to a fine point,
the application process is interrupted and restarted with the next CAP instruction.

Application manual - Continuous Application Platform 21
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.5 Programming recommendations

2.6 Program execution

Corner zones
If last_instr is set to TRUE in capdata in the middle of a sequence of CAP
instructions, the application process is ended with all end phases, as described in
Process phases on page12. Which phases are executed, depends on the presence
of flying end. The following CAP instruction will start the process again, with all
start phases as described in Process phases on page 12. Which phases are
executed, depends on the presence of flying start.
If a fine point occurs in the middle of a sequence of CAP instructions without
last_instr set to TRUE in capdata, the application processwill not be interrupted,
the program execution will proceed to the next CAP instruction in advance
(prefetch), and the movement will execute a corner zone z0.
If execution of logical instructions in the middle of a sequence of CAP instructions
take so long time, that a programmed corner path is converted to a fine point (50024
Corner path failure), the application process is interrupted (110013 Application
process interrupted) without executing the end phases described inProcess phases
on page 12.

22 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.6 Program execution

2.7 Predefined events

Description
The predefinedCAP events, which occur during the CAP process, can be connected
to RAPID TRAP routines. To do this, the RAPID instruction ICap is used before
running the first CAP movement instruction. This enables the user to synchronize
application process equipment with the robot movement. See ICap - connect CAP
events to trap routines on page 88.

xx2300000245

Application manual - Continuous Application Platform 23
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.7 Predefined events

2.8 Coupling between phases and events

Phases and events
Conditional events
Events for flying start/end

EventsPhase

CAP_PF_RESTART

START_PRE

PR
E

RESTART
AT_RESTARTPOINT
FLY_START
CAP_START
START_PRE
PRE_STARTED

PRE

END_PREEND_PRE PRE_ENDED

START_MAINSTART_MAIN

M
AI
N

MAIN_STARTED

STOP_WEAVESTART
WEAVESTART_REG
MOTION_DELAY
STARTSPEED_TIME
MAIN_MOTION
MOVE_STARTED
AT_ERRORPOINT

MAIN EQUIDIST
CENTERLINE
CAP_STOP
AT_POINT
NEW_INSTR
LAST_SEGMENT
PATH_END_POINT
PROCESS_ENDPOINT
FLY_END

END_MAIN
END_MAIN MAIN_ENDED

LAST_INSTR_ENDED

START_POST1START_POST1

PO
ST

1

POST1_STARTED

POST1

END_POST1
POST1_ENDEDEND_POST1

Continues on next page
24 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.8 Coupling between phases and events

EventsPhase

START_POST2START_POST2

PO
ST

2

POST2_STARTED

POST2

END_POST2
POST2_ENDED
PROCESS_ENDED

END_POST2

All events are listed in alphabetical order in ICap - connect CAP events to trap
routines on page 88.

User events
The CAP movement instructions CapL and CapC offer the possibility to define
trigger events (switches \T1 to \T8 and \TriggArray). These trigger events can
be coupled to CAP movement instructions with TriggIO, TriggEquip or
TriggInt. See CapL - Linear CAP movement instruction on page 64 and CapC -
Circular CAP movement instruction on page 50.

Application manual - Continuous Application Platform 25
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.8 Coupling between phases and events

Continued

2.9 Error handling

Description
Two different types of error can occur during execution of the RAPID instructions
CapL or CapC:

• Recoverable error: these errors can be handled in a RAPID error handler,
see error handling for CapL - Linear CAP movement instruction on page 64.
The system variable ERRNO is set and the user can check the value of
ERRNO in the error handler, to get information about which error occurred
and choose adequate recoverymeasures. For recoverable errors it is possible
to use the RAPID instructions RETRY, TRYNEXT, StartMoveRetry in the
error handler. An error message is generated.

• Fatal error: if such an error occurs, the robot controller has to be restarted.
A fatal error message is generated.

Continues on next page
26 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.9 Error handling

2.9.1 Recoverable errors

Introduction
Recoverable errors can be handled in a RAPID error handler. The application
builder can choose to use RETRY or StartMoveRetry several times, depending
on the application and the type of error. If for example, the arc in an arc welding
application does not strike the first time, it makes sense to retry arc ignition several
times. If these attempts are unsuccessful the error may be raised to the next level
of RAPID (RAISE) or (only available in a NOSTEPIN / NOVIEW module) to user
level (RaiseToUser) - see examples below.

Errors from CapL and CapC
Errors from themovement instructions CapL and CapC are CAP specific. SeeCapL
- Linear CAPmovement instruction on page64 andCapC - Circular CAPmovement
instruction on page 50. That means, that those error codes have to be translated
to application specific error codes in the error handler, to make it easier for users
of that application to understand the error message. After translation of the error,
the new, application specific error code is raised to the user (RAISE
new_err_code) - see Example 1 on page 28.
These errors should be converted to application specific errors, depending on the
type of application that is built on top of CAP. To achieve this the ERRNO has to be
checked in the error handler. See Example 1 on page 28.
Suppose a supervised signal fails in the MAIN supervision phase. The end user
should not get a general CAP_MAIN_ERR error. The application layer should return
a more specific error, since this error depends on how CAP is used by the RAPID
application. If several signals are supervised during a supervision phase, all these
signals have to be checked in the application error handler to identify the error
more specifically.

No error handler
If no error handler can be found or there is an error handler, but it does not handle
the error - that is, none of the instructions RETRY, StartMoveRetry, TRYNEXT,
RETURN or RAISE are present in the error handler - the active robot path is cleared.
That means, that neither regain to path nor backing on the path is possible. At
restart of program execution the robot movement starts from the current position
of the TCP, which might result in a path shortcut.

Start phase supervision errors
If a START_MAIN phase supervision error occurs during flying start, the movement
is stopped at the end of the START_MAIN distance and at restart the application
process is handled like an ordinary restart after an error - with all user defined
restart functionality like scrape start, start delay, etc.

Continues on next page
Application manual - Continuous Application Platform 27
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.9.1 Recoverable errors

Examples
Below there are two examples of different error handling type. It is recommended
to implement error handling as shown in example 2, where the CAP application
process survives and no extra code has to be executed in a retry from user level.
See Example 2 on page 29.
The SkipWarn instruction in the error handlers is used to prevent the CAP specific
error from being sent to the error log. For an application user (for example, Arc
Welding) CAP specific errors are not interesting. The errors shown in the event
log shall be application specific.

Example 1
This is an example with RAPID modules that are not NOSTEPIN / NOVIEW. If the
error is sent to the RAPID main routine using RETRY, the CAP process will exit.
A RETRY order in the error handler case MY_AW_ERR_1will continue execution and
make a retry on arcl_move_only. After a retry in the calling RAPID routine a new
CAP process will be created when the CapL instruction is executed and the value
of example_count1 will be 2 .

MODULE CAP_EXAMPLE1

VAR num example1_count:=0;

PROC main()

MoveJ p10,v200,fine,tool0;

arcl_move_only p11, v20, z20, tool0;

ERROR

TEST ERRNO

CASE MY_AW_ERR_1:

StartMoveRetry;

CASE MY_AW_ERR_2:

EXIT;

DEFAULT:

EXIT;

ENDTEST

ENDPROC

LOCAL PROC arcl_move_only (robtarget ToPoint, speeddata Speed,
zonedata Zone, PERS tooldata Tool \PERS wobjdata WObj \switch
Corr)

example1_count := example1_count + 1;

CapL Topoint, Speed, IntCdata, IntWeavestart, IntWeave, Zone, Tool
\wobj?wobj;

ERROR

ResetIoSignals;

IF no_of_retries > 0 THEN

IF err_cnt < no_of_retries THEN

err_cnt := err_cnt + 1;

Skipwarn; !Remove CAP error from event log err_code :=
new_aw_errMsg();

StartMoveRetry;

Continues on next page
28 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.9.1 Recoverable errors
Continued

ELSE

err_cnt := 0;

Skipwarn;

err_code := new_aw_errMsg();

RAISE err_code;

!Kills the CAP process, and raises mapped error

ENDIF

ELSE

Skipwarn;

err_code := new_aw_errMsg();

RAISE err_code;

!Kills the CAP process, and raises mapped error

ENDIF

ENDPROC

FUNC errnum new_aw_errMsg (\switch W)

VAR errnum ret_code;

TEST ERRNO

CASE CAP_PRE_ERR:

! Check of signals here

ret_code := AW_EQIP_ERR;

ENDTEST

RETURN ret_code;

ENDFUNC

ENDMODULE

Example 2
This is an example with one RAPIDmodule CAP_EXAMPLE2, wheremain is located.
Another module that is NOVIEW and NOSTEPIN, contains the procedure
arcl_move_only, which encapsulates the process control. If the error is raised
to the main routine (RaiseToUser \Resume), the CAP process is still active. The
RETRY order in the error handler case MY_AW_ERR_1 will continue execution and
make a retry directly on the CapL instruction. The example_count1 will be 1 when
executing the CapL instruction after a retry from the user level.

Note

The instruction RaiseToUser can only be used in NOVIEW and/or NOSTEPIN
module.

MODULE CAP_EXAMPLE2

VAR num example1_count:=0;

PROC main()

MoveJ p10,v200,fine,tool0;

arcl_move_only p11, v20, z20, tool0;

ERROR

TEST ERRNO

Continues on next page
Application manual - Continuous Application Platform 29
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.9.1 Recoverable errors

Continued

CASE MY_AW_ERR_1:

StartMoveRetry;

CASE MY_AW_ERR_2:

EXIT;

DEFAULT:

EXIT;

ENDTEST

ENDPROC

ENDMODULE

MODULE ARCX_MOVE_ONLY(NOSTEPIN, NOVIEW)

LOCAL PROC arcl_move_only(robtarget ToPoint, speeddata Speed,
zonedata Zone, PERS tooldata Tool \PERS wobjdata WObj \switch
Corr)

example1_count:=example1_count + 1;

CapLTopoint, Speed, IntCdata, IntWeavestart, IntWeave, Zone, Tool
\wobj?wobj;

ERROR

ResetIoSignals;

IF no_of_retries > 0 THEN

IF err_cnt < no_of_retries THEN

err_cnt := err_cnt + 1;

Skipwarn;

err_code := new_aw_errMsg();

StartMoveRetry;

ELSE

err_cnt := 0;

Skipwarn;

err_code := new_aw_errMsg();

RaiseToUser \Resume \ErrorNumber:=err_code;

ENDIF

ELSE

Skipwarn;

err_code := new_aw_errMsg();

RaiseToUser \Resume \ErrorNumber:=err_code;

ENDIF

ENDPROC

FUNC errnum new_aw_errMsg (\switch W)

VAR errnum ret_code;

TEST ERRNO

CASE CAP_PRE_ERR:

! Check of signals here

ret_code := AW_EQIP_ERR;

ENDTEST

RETURN ret_code;

ENDFUNC

ENDMODULE

Continues on next page
30 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.9.1 Recoverable errors
Continued

The errnum raised to the calling routine arcl_move_only is AW_EQIP_ERR, that
is, the CAP error CAP_PRE_ERR is replaced by AW_EQIP_ERR and the CAP error
will not appear in the error log (topic Process).

Application manual - Continuous Application Platform 31
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.9.1 Recoverable errors

Continued

2.10 Restart

Description
If the execution of a CapL/CapC instruction is stopped due to a recoverable error
or a program stop, it is possible to let the robot back a certain distance on the
programmed path before restart of the process. The backing distance has to be
specified in capdata, see capdata - CAP data on page 99.

Units
In CAP the following units are used:

mmlength

stime

mm/sspeed

degreeangle

Tuning
Using the RAPID instruction CapRefresh, it is possible to change the active value
of (tune) the following data during execution:
weavedata components:

• active

• width

• height

• bias

weavestartdata components:
• active

capdata components:
• speed_data.main

• restart_dist

Example
The example changes the main speed and weave within a TRAP.

VAR intnum intno0;

PROC main()

IDelete intno0;

CONNECT intno0 WITH MainMotionTrp;

ICap intno0, MAIN_MOTION;

CapL p11, v100, cdata1, weavestart, weave, fine, tool0;

ENDPROC

TRAP MainMotionTrp

cdata1.speed_data.main := 23;

weave.width := 5;

ENDTRAP

Continues on next page
32 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.10 Restart

Note

In this example the TRAP-routine is inside themainmodule. The recommendation
is that all TRAP-routines should be executed by a background task.

Application manual - Continuous Application Platform 33
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.10 Restart
Continued

2.11 System event routines

Introduction
CAP is not aware of any process equipment, i.e. the control of process equipment
has to be handled in TRAP routines connected to CAP events set up with ICap,
see ICap - connect CAP events to trap routines on page 88. It is also possible, but
not recommended, to use shelf-hooks (stop-, start-, restart-, ...) to activate and
deactivate process equipment.
Any error (fatal or recoverable) or RAPID program stop with an active CAP
application process, generates the ICap event CAP_STOP. CAP always demands
that a TRAP routine is connected to CAP_STOP. This TRAP routine has to deactivate
external equipment. If anything unexpected happens in the controller software, the
stop shelf on system level takes the system to a fail-safe state, but it does not stop
the application process. Keep in mind that TRAP execution is stopped when RAPID
execution of a NORMAL task is stopped. Therefore the TRAP connected to
CAP_STOP has to be placed in a STATIC or SEMISTATIC task.

Exceptions
Not all errors can be handled in shelf-hooks or in the TRAP routine connected to
CAP_STOP. If the system, for some reason, is forced to system failure state, all
execution of RAPID code is immediately stopped and TRAP routines might not be
executed due to high load in the controller. To handle this situation, CAP offers
the possibility to register digital signals together with a signal state (0 or 1) using
the RAPID instruction CapSetDOAtStop. At any RAPID execution stop, CAP will
set all signals that were registered, to the respective registered state. It is highly
recommended to register signals in CAP that stop the application process.

34 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.11 System event routines

2.12 Limitations

Limitations
• Execution of RAPID instructions that take long time (e.g. writing to file,

WaitTime, ...) between CAP movement instructions (CapL, CapC) will delay
the execution of the next movement instruction. That may cause corner path
failure, stopping the movement of the robot for a short time, which may be
fatal for the process (for example, arc welding).

• CAP does not support error recovery with long jump.

Application manual - Continuous Application Platform 35
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

2 Functionality of CAP
2.12 Limitations

This page is intentionally left blank

3 Programming examples
3.1 Laser cutting example

Requirements
• a slot is to be cut into a number of metal sheets with a laser
• accuracy is not critical at the starting point of the slot
• accuracy is critical at the finishing point of the slot
• the application is time critical, i.e. it should be as fast as possible

CAP setup to meet the requirements
• flying start: the robot can move with speed past the start point (P1) and start

the process on the fly between point P1 and Pstart.
• normal end: the robot must cut all the way to the end point (P2) and stop

before turning off the laser and moving on to next cycle.
• In order to assure the quality of the cuts the process needs to be started at

the latest one second after passing Pstart. Three seconds are given for ending
the process.

xx1200000172

Application manual - Continuous Application Platform 37
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

3 Programming examples
3.1 Laser cutting example

3.2 Step by step

Set up CAP events
First you need to set up the necessary CAP events. For this application a minimum
of two events are needed:

• start the application process: SUPERV_START_MAIN generated at position
Pstart

• stop the application process: SUPERV_END_MAIN generated at the end
position P2

VAR intnum start_intno:=0;

VAR intnum end_intno:=1;

TRAP start_trap

SetDo doLaserOn, high;

ENDTRAP

TRAP end_trap

SetDo doLaserOn, low;

ENDTRAP

IDelete start_intno;

IDelete end_intno;

CONNECT start_intno WITH start_trap;

CONNECT end_intno WITH end_trap;

ICap start_intno, START_MAIN;

ICap end_intno, END_MAIN;

Set up supervision
In this case only one signal, diLaserOn, needs to be supervised, but in three
different process phases:

1 diLaserOn needs to go high (ACT) in the START_MAIN phase.
2 diLaserOn needs to stay high (i.e. supervision shall trigger on change from

ACT to PAS) during the MAIN phase.
3 diLaserOn needs to go low (PAS) in the END_MAIN phase.

That means that we need to setup the handshake supervisions with time-out timers
for the phases START_MAIN and END_MAIN. We nee also a status supervision
during MAIN.

CapSetupSupervision diLaserOn, ACT, SUPERV_START_MAIN;

CapSetupSupervision diLaserOn, ACT, SUPERV_MAIN;

CapSetupSupervision diLaserOn, PAS, SUPERV_END_MAIN;

capdata.start_fly_point.process_dist := 0;

capdata.start_fly_point.distance := 100;

capdata.sup_timeouts.start_cond := 1;

capdata.end_fly_point.process_dist := 0;

capdata.end_fly_point.distance := 0;

capdata.sup_timeouts.end_main_cond := 3;

Continues on next page
38 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

3 Programming examples
3.2 Step by step

The main program
The user might use an encapsulation of CapL, we call it CutL in the following way:

PROC CUTL (...)

MoveL p1, v100, z10,...

CapL p2, v100, cdata, startweave, weave, fine, tool0, ...

MoveL px, ...

ENDPROC

Application manual - Continuous Application Platform 39
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

3 Programming examples
3.2 Step by step

Continued

This page is intentionally left blank

4 RAPID references
4.1 Instructions

4.1.1 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals

Usage
CapAPTrSetupAI is used to setup an At-Point-Tracker controlled by analog input
signals.

Basic examples
The following example illustrates the instruction CapAPTrSetupAI.

Example 1
TASK PERS capdata cData:=[.....];

TASK PERS weavestartdata wsData:=[.....];

TASK PERS capweavedata wData:=[.....];

TASK PERS captrackdata trackData:=["ANALOG_TRACKER",.....];

VAR capaptrreferencedata referenceData:=[2,2,1,1,0.1,0.1];

VAR signalai ai_y;

VAR signalai ai_z;

AliasIO realsignal_y, ai_y;

AliasIO realsignal_z, ai_z;

CapAPTrSetupAI ai_y, ai_z, referenceData;

CapL p1, v200, cData, wsData, wData , fine, tWeldGun
\Track:=trackData;

Arguments
CapAPTrSetupAO ai_y, ai_z, ReferenceData [\MaxIncrCorr]

[\WarnMaxCorr] [\Filter] [\SampleTime] [\Logfile] [\LogSize]
[\LatestCorr] [\AccCorr]

ai_y

Data type: signalai
Analog input signal used as process position for the y-direction.

ai_z

Data type: signalai
Analog input signal used as process position for the z-direction.

ReferenceData

Data type: capaptrreferencedata
Setup data used for the correction regulator loop.

MaxIncCorr

Data type: num

Continues on next page
Application manual - Continuous Application Platform 41
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.1 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals

Continuous Application Platform

Maximum incremental correction allowed (in mm).
If the incremental TCP correction is larger than \MaxIncCorr and \WarnMaxCorr,
the robot will continue its path but the applied incremental correction will not exceed
\MaxIncCorr. If \WarnMaxCorr is not specified, a track error is reported and the
program execution is stopped.

WarnMaxCorr

Data type: switch
If this switch is present the program execution is not interrupted when the limit for
maximum correction is exceeded, specified in \MaxIncCorr. Only a warning is
sent.

Filter

Data type: num
Size of the reference sample data filter. A value between 1 and 15 is allowed, the
default value is 1.

SampleTime

Data type: num
Sample time in milliseconds for the correction loop. The value is rounded to a
multiple of 24. The minimum value allowed is 24, and the default value is 24.

LogFile

Data type: string
The name of the tracklog log file. The log file is placed in the HOME directory of
the system.

LogSize

Data type: num
The size of the tracklog ring buffer that is the number of sensor measurements
that can be buffered during tracking.
Default value: 1000.

LatestCorr

Data type: pos
Size of the latest added correction (in mm).

AccCorr

Data type: pos
Size of the total accumulated correction added (in mm).

Syntax
CapAPTrSetupAI

[aoi_y ':='] <expression (IN) of signalai> ','

[ai_z ':='] <expression (IN) of signalai> ','

[ReferenceData ':='] <expression (IN) of capaptrreferencedata>
','

[\MaxIncrCorr ':='] <expression (IN) of num> ','

[\WarnMaxCorr ':='] <expression (IN) of switch> ','

Continues on next page
42 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.1 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals
Continuous Application Platform
Continued

[\Filter ':='] <expression (IN) of num> ','

[\SampleTime ':='] <expression (IN) of num> ','

[\LogFile ':='] <expression (IN) of string> ','

[\LogSize ':='] <expression (IN) of num> ','

[\LatestCorr ':='] <expression (PERS) of pos> ','

[\AccCorr ':='] <expression (PERS) of pos> ';'

Related information

SeeFor information about

CapAPTrSetupAO - Setup an At-Point-Tracker
controlled by analog output signals on page 44

Instruction CapAPTrSetupAO

CapAPTrSetupPERS - Setup an At-Point-Tracker
controlled by persistent variables on page 47

Instruction CapAPTrSetupPERS

capaptrreferencedata - Variable setup data for
At-Point-Tracker on page 97

Data type capaptrreferencedata

Application manual - Controller software Omni-
Core

Sensor Interface

Application manual - Continuous Application Platform 43
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.1 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals

Continuous Application Platform
Continued

4.1.2 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output
signals

Usage
CapAPTrSetupAO is used to setup an At-Point-Tracker controlled by analog output
signals.

Basic examples
The following example illustrates the instruction CapAPTrSetupAO.

Example 1
TASK PERS capdata cData:=[.....];

TASK PERS weavestartdata wsData:=[.....];

TASK PERS capweavedata wData:=[.....];

TASK PERS captrackdata trackData:=["ANALOG_TRACKER",.....];

VAR capaptrreferencedata referenceData:=[2,2,1,1,0.1,0.1];

VAR signalao ao_y;

VAR signalao ao_z;

AliasIO realsignal_y, ao_y;

AliasIO realsignal_z, ao_z;

CapAPTrSetupAO ao_y, ao_z, referenceData;

CapL p1, v200, cData, wsData, wData , fine, tWeldGun
\Track:=trackData;

Arguments
CapAPTrSetupAO ao_y, ao_z, ReferenceData [\MaxIncrCorr]

[\WarnMaxCorr] [\Filter] [\SampleTime] [\Logfile] [\LogSize]
[\LatestCorr] [\AccCorr]

ao_y

Data type: signalao
Analog output signal used as process position for the y-direction.

ao_z

Data type: signalao
Analog output signal used as process position for the z-direction.

ReferenceData

Data type: capaptrreferencedata
Setup data used for the correction regulator loop.

MaxIncCorr

Data type: num
Maximum incremental correction allowed (in mm).
If the incremental TCP correction is larger than \MaxIncCorr and \WarnMaxCorr,
the robot will continue its path but the applied incremental correction will not exceed

Continues on next page
44 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.2 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals
Continuous Application Platform

\MaxIncCorr. If \WarnMaxCorr is not specified, a track error is reported and the
program execution is stopped.

WarnMaxCorr

Data type: switch
If this switch is present the program execution is not interrupted when the limit for
maximum correction is exceeded, specified in \MaxIncCorr. Only a warning is
sent.

Filter

Data type: num
Size of the reference sample data filter. A value between 1 and 15 is allowed, the
default value is 1.

SampleTime

Data type: num
Sample time in milliseconds for the correction loop. The value is rounded to a
multiple of 24. The minimum value allowed is 24, and the default value is 24.

LogFile

Data type: string
The name of the tracklog log file. The log file is placed in the HOME directory of
the system.

LogSize

Data type: num
The size of the tracklog ring buffer that is the number of sensor measurements
that can be buffered during tracking.
Default value: 1000.

LatestCorr

Data type: pos
Size of the latest added correction (in mm).

AccCorr

Data type: pos
Size of the total accumulated correction added (in mm).

Syntax
CapAPTrSetupAO

[ao_y ':='] <expression (IN) of signalao> ','

[ao_z ':='] <expression (IN) of signalao> ','

[ReferenceData ':='] <expression (IN) of capaptrreferencedata>
','

[\MaxIncrCorr ':='] <expression (IN) of num> ','

[\WarnMaxCorr ':='] <expression (IN) of switch> ','

[\Filter ':='] <expression (IN) of num> ','

[\SampleTime ':='] <expression (IN) of num> ','

[\LogFile ':='] <expression (IN) of string> ','

Continues on next page
Application manual - Continuous Application Platform 45
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.2 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals

Continuous Application Platform
Continued

[\LogSize ':='] <expression (IN) of num> ','

[\LatestCorr ':='] <expression (PERS) of pos> ','

[\AccCorr ':='] <expression (PERS) of pos> ';'

Related information

SeeFor information about

CapAPTrSetupAI - Setup an At-Point-Tracker
controlled by analog input signals on page 41

Instruction CapAPTrSetupAI

CapAPTrSetupPERS - Setup an At-Point-Tracker
controlled by persistent variables on page 47

Instruction CapAPTrSetupPERS

capaptrreferencedata - Variable setup data for
At-Point-Tracker on page 97

Data type capaptrreferencedata

Application manual - Controller software Omni-
Core

Sensor Interface

46 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.2 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals
Continuous Application Platform
Continued

4.1.3 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent
variables

Usage
CapAPTrSetupPERS is used to setup an At-Point-Tracker controlled by persistent
variables.

Basic examples
The following example illustrates the instruction CapAPTrSetupPERS.

Example 1
TASK PERS capdata cData:=[.....];

TASK PERS weavestartdata wsData:=[.....];

TASK PERS capweavedata wData:=[.....];

TASK PERS captrackdata trackData:=["ANALOG_TRACKER",.....];

PERS pos corr:=[0,-0.05,-0.025];

VAR capaptrreferencedata referenceData:=[2,2,1,1,0.1,0.1];

main()

IDelete intno1;

CONNECT intno1 WITH trOffset;

CapAPTRSetupPERS corr.y, corr.z, referenceData;

ITimer 1,intno1;

CapL p1, v200, cData, wsData, wData , fine,
tWeldGun\Track:=trackData;

ENDPROC

TRAP trOffset

corr.y := referenceData.reference_y +-;

corr.z := referenceData.reference_z +-;

ENDTRAP

Arguments
CapAPTrSetupPERS var_y, var_z, ReferenceData [\ResetToReference]

[\MaxIncrCorr] [\WarnMaxCorr] [\Filter] [\SampleTime]
[\Logfile] [\LogSize] [\LatestCorr] [\AccCorr]

var_y

Data type: num
Persistent data used as process position for the y-direction.

var_z

Data type: signalai
Persistent data used as process position for the z-direction.

ReferenceData

Data type: capaptrreferencedata
Setup data used for the correction regulator loop.

Continues on next page
Application manual - Continuous Application Platform 47
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.3 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables

Continuous Application Platform

[\ResetToReference]

Data type: switch
This switch enables resetting the value of the persistent correction data var_y
and var_z to the reference value. If var_y and var_z are updated at low frequency,
for example, using RAPID code, this switch is used to avoid drifting of the path
correction.

MaxIncCorr

Data type: num
Maximum incremental correction allowed (in mm).
If the incremental TCP correction is larger than \MaxIncCorr and \WarnMaxCorr,
the robot will continue its path but the applied incremental correction will not exceed
\MaxIncCorr. If \WarnMaxCorr is not specified, a track error is reported and the
program execution is stopped.

WarnMaxCorr

Data type: switch
If this switch is present the program execution is not interrupted when the limit for
maximum correction is exceeded, specified in \MaxIncCorr. Only a warning is
sent.

Filter

Data type: num
Size of the reference sample data filter. A value between 1 and 15 is allowed, the
default value is 1.

SampleTime

Data type: num
Sample time in milliseconds for the correction loop. The value is rounded to a
multiple of 24. The minimum value allowed is 24, and the default value is 24.

LogFile

Data type: string
The name of the tracklog log file. The log file is placed in the HOME directory of
the system.

LogSize

Data type: num
The size of the tracklog ring buffer that is the number of sensor measurements
that can be buffered during tracking.
Default value: 1000.

LatestCorr

Data type: pos
Size of the latest added correction (in mm).

AccCorr

Data type: pos

Continues on next page
48 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.3 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables
Continuous Application Platform
Continued

Size of the total accumulated correction added (in mm).

Syntax
CapAPTrSetupPERS

[var_y ':='] <expression (PERS) of num> ','

[var_z ':='] <expression (PERS) of vnum> ','

[ReferenceData ':='] <expression (IN) of capaptrreferencedata>
','

[\ResetToReference ':='] <expression (IN) of switch>','

[\MaxIncrCorr ':='] <expression (IN) of num> ','

[\WarnMaxCorr ':='] <expression (IN) of switch> ','

[\Filter ':='] <expression (IN) of num> ','

[\SampleTime ':='] <expression (IN) of num> ','

[\LogFile ':='] <expression (IN) of string> ','

[\LogSize ':='] <expression (IN) of num> ','

[\LatestCorr ':='] <expression (PERS) of pos> ','

[\AccCorr ':='] <expression (PERS) of pos> ';'

Related information

SeeFor information about

CapAPTrSetupAI - Setup an At-Point-Tracker
controlled by analog input signals on page 41

Instruction CapAPTrSetupAI

CapAPTrSetupAO - Setup an At-Point-Tracker
controlled by analog output signals on page 44

Instruction CapAPTrSetupAO

capaptrreferencedata - Variable setup data for
At-Point-Tracker on page 97

Data type capaptrreferencedata

Application manual - Controller software Omni-
Core

Sensor Interface

Application manual - Continuous Application Platform 49
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.3 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables

Continuous Application Platform
Continued

4.1.4 CapC - Circular CAP movement instruction

Usage
CapC is used to move the tool center point (TCP) along a circular path to a given
destination and at the same time control a continuous process. Furthermore it is
possible to connect up to eight events to CapC. The events are defined using the
instructions TriggRampAO, TriggIO, TriggEquip, TriggInt, TriggCheckIO,
or TriggSpeed.

Basic examples

Example 1
Circular movements with CapC.

CapC cirp, p1, v100, cdata, weavestart, weave, fine, gun1;

The TCP of the tool, gun1, is moved circularly to the fine point p1 with speed
defined in cdata.

Example 2
Circular movement with user event and CAP event.

VAR intnum start_intno;

...

PROC main()

VAR triggdata gunon;

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveJ p1, v500, z50, gun1;

CapC p2,p3,v500,cdata,wstart,w1,fine,gun1,\T1:=gunon;

ENDPROC

TRAP start_trap

! This routine will be executed when the event CAP_START is
reported

ENDTRAP

The digital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p1. The trap routine start_trap is executed when the
CAP process is starting.

xx1200000174

Continues on next page
50 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction
COntinuous Application Platform

Arguments
CapC Cirpoint ToPoint [\Id] Speed Cdata [\MoveStartTimer] Weavestart

Weave Zone [\Inpos] Tool [\WObj] [\Corr] [\Time] [\T1]
[\TriggArray] [\T2] [\T3] [\T4] [\T5] [\T6] [\T7] [\T8]
[\TLoad]

CirPoint

Data type: robtarget
The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point, the robot may give a warning. The circle
point is defined as a named position or stored directly in the instruction (marked
with an * in the instruction). The position of the external axes are not used.

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

Cdata

(CAP process Data)
Data type: capdata
CAP process data, see capdata - CAP data on page 99 for a detailed description.

[\Movestart_timer]

(Time in s)
Data type: num
Upper limit for the time difference between the order of the process start and the
actual start of the robot's TCP movement in a MultiMove system in synchronized
mode.

Weavestart

(Weavestart Data)

Continues on next page
Application manual - Continuous Application Platform 51
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction

COntinuous Application Platform
Continued

Data type: weavestartdata
Weave start data for the CAP process, see weavestartdata - weave start data on
page 117 for a detailed description.

Weave

(Weave Data)
Data type: capweavedata
Weaving data for the CAP process, see capweavedata - Weavedata for CAP on
page 103 for a detailed description.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type:stoppoint data
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if it is then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used this argument must be specified in order for a circle relative to the
work object to be executed.

[\Corr]

Correction
Data type: switch
Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Corrections is required when using this argument.

[\Time]

Data type: num

Continues on next page
52 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction
COntinuous Application Platform
Continued

This argument is used to specify the total time in seconds during which the robot
and additional axes move. It is then substituted for the corresponding speed data.

[\T1]

Trigg 1
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

TriggArray

Trigg Data Array Parameter
Data type: triggdata
Array variable that refers to trigger conditions and trigger activity defined earlier
in the program using the instructions TriggIO, TriggEquip, TriggInt,
TriggSpeed, TriggCheckIO, or TriggRampAO.
The limitation is 25 elements in the array and 1 to 25 defined trigger conditions
must be defined.
It is not possible to use the optional arguments T2, T3, T4, T5, T6, T7, or T8 at the
same time as the TriggArray argument is used.

[\T2]

Trigg 2
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T3]

Trigg 3
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T4]

Trigg 4
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T5]

Trigg 5
Data type: triggdata

Continues on next page
Application manual - Continuous Application Platform 53
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction

COntinuous Application Platform
Continued

Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T6]

Trigg 6
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T8]

Trigg 8
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T8]

Trigg 8
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
54 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction
COntinuous Application Platform
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See Technical reference manual - RAPID Instructions, Functions and Data types
for information about the MoveL and TriggL.

Error handling
There are several different types of errors that can be handled in the error handler
for the CapC/CapL instructions:

• supervision errors
• sensor specific errors
• errors specific to a MultiMove system
• errors inherited from TriggX functionality
• other CAP errors

If one of the signals that is supposed to be supervised does not have the correct
value, or if it changes value during supervision, the system variable ERRNO is set.
If no values can be read from the track sensor, the system variable ERRNO is set.
For a MultiMove system running in synchronizedmode the error handler must take
care of two other errors. One is used to report that some other application has
detected an recoverable error. This enables recoverable error handling in
synchronized RAPID tasks. The other error, CAP_MOV_WATCHDOG, is reported if
the time between the order of the process start and the actual start of the robot's
TCP movement in a MultiMove system in synchronized mode expires. The time
used is specified in the optional parameter Movestart_timer in the CapC
instruction.
If anything abnormal is detected, program execution will stop. If, however, an error
handler is programmed, the errors defined below can be remedied without stopping
production. However, a recommendation is that some of the errors (the errors with
CAP_XX) these errors should not be presented for the end user. Map those errors
to a application specific error. For the supervision errors the instruction
CapGetFailSigs can be used to get which specific signal that failed.

Supervision errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This error occurs when there is an error in the START_PRE
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
pre_cond time-out).

CAP_START_PRE_ERR

Continues on next page
Application manual - Continuous Application Platform 55
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction

COntinuous Application Platform
Continued

This error occurs when there is an error during the supervi-
sion of the PRE phase.

CAP_PRE_ERR

This event occurs when there is an error in the END_PRE
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
start_cond time-out).

CAP_END_PRE_ERR

This event occurs when there is an error in the START_MAIN
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
start_cond time-out).

CAP_START_MAIN_ERR

This error occurs when there is an error during the supervi-
sion of the MAIN phase.

CAP_MAIN_ERR

This error occurs when there is an error in the END_MAIN
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_END_MAIN_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST1_ERR

This error occurs when there is an error during the supervi-
sion of the POST1 phase.

CAP_POST1_ERR

This error occurs when there is an error in the END_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_END_POST1_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST2_ERR

This error occurs when there is an error during the supervi-
sion of the POST2 phase.

CAP_POST2_ERR

This error occurs when there is an error in the END_POST2
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_END_POST2_ERR

If supervision is done on two different signals in the same
phase, and both of them fails, the first one that is setup with
is the one that generates the error.
If supervision is done on two different signals in the same
phase, and both of them fails, the first one that is setup with
CapSetupSupervision is the one that generates the error.

Sensor related errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Track error occurs when reading data from sensor and after
a time no valid data are received. One reason for this could
be that the sensor cannot indicate the seam.

CAP_TRACK_ERR

Track start error occurs when no valid data has been read
from the laser track sensor.

CAP_TRACKSTA_ERR

Track correction error occurs when something goes wrong
in the calculation of the offset.

CAP_TRACKCOR_ERR

Continues on next page
56 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction
COntinuous Application Platform
Continued

The communication between the robot controller and the
sensor equipment is broken.

CAP_TRACKCOM_ERR

It is not possible to continue tracking, if a power failure oc-
curred during tracking.

CAP_TRACKPFR_ERR

The controller did not get a valid measurement from sensor.CAP_SEN_NO_MEAS

The sensor is not ready yet.CAP_SEN_NOREADY

A general sensor error occurred.CAP_SEN_GENERRO

The sensor is busy and cannot answer the request.CAP_SEN_BUSY

The command sent to the sensor is unknown to sensor.CAP_SEN_UNKNOWN

The variable or block number sent to the sensor is illegal.CAP_SEN_ILLEGAL

An external alarm occurred in the sensor.CAP_SEN_EXALARM

A camera alarm occurred in the sensor.CAP_SEN_CAALARM

The sensor temperature is out of range.CAP_SEN_TEMP

The value sent to the sensor is out of range.CAP_SEN_VALUE

The camera check failed.CAP_SEN_CAMCHECK

The sensor did not respond within the time out time.CAP_SEN_TIMEOUT

Errors possible in MultiMove systems
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

When using synchronizedmotion this error is reported when
an application controlling one mechanical unit detects a re-
coverable error and notifies other applications that something
went wrong. If this error code is received from a CapC instruc-
tion, the error is a reaction on another error. All tasks using
movement instructions in synchronizedmode in aMultiMove
system should have this ERRNO value defined in the error
handler.

ERR_PATH_STOP

Errors inherited from TriggX

The instruction CapC is based on the instruction TriggC. As a consequence you
can get and handle the errors ERR_AO_LIM and ERR_DIPLAG_LIM, as in TriggC.
The system variable ERRNO will be set to:

If the programmed ScaleValue/SetValue argument for
the specified analog output signal AOp/AOutput in some
of the connected TriggSpeed/TriggRampAO instructions,
results are out of limit for the analog signal together with the
programmed Speed in this instruction. The system variable
ERRNO is set to ERR_AO_LIM.

ERR_AO_LIM

If the programmed DipLag argument in some of the connec-
ted TriggSpeed instructions, is too big in relation to the
used system parameter Event Preset Time, the system
variable ERRNO is set to ERR_DIPLAG_LIM.

ERR_DIPLAG_LIM

Continues on next page
Application manual - Continuous Application Platform 57
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction

COntinuous Application Platform
Continued

Other CAP errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This recoverable error is generated at the end of the first
CapC/L instruction of a sequence if the optional argument
\PreProcessTracking is used. It can be handled in the
error handler to start the process.

CAP_ATPROC_START

This error occurs when the instruction CapNoProcess is
used to run a certain distance without application process
and the end of this distance is reached. This is not really an
error, but it uses the mechanisms of error recovery.

CAP_NOPROC_END

This error occurs when the switch \Movestart_timer is
specified and the time between the process start
(MAIN_STARTED) and the start of the robot movement ex-
ceeds the time specified with the switch.

CAP_MOV_WATCHDOG

CAP process
During continuous execution in both Automode andManualmode, the CAP process
is running, unless it is blocked. That means, that all data controlling the CAP
process (that is, Cdata, Weavestart, Weave and Movestart_timer), are used.
In these modes all CAP trigger activities are carried out, see ICap - connect CAP
events to trap routines on page 88.
In all other execution modes the CAP process is not running, and the CapC
instruction behaves like a MoveC instruction.

Trigger conditions [\T1] to [\T8] and [\TriggArray]
As the trigger conditions are fulfilled when the robot is positioned closer and closer
to the end point, the defined trigger activities are carried out. The trigger conditions
are fulfilled either at a certain distance before the end point of the instruction, or
at a certain distance after the start point of the instruction, or at a certain point in
time (limited to a short time) before the end point of the instruction.
During stepping execution forwards, the I/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at
all are carried out.

Continues on next page
58 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction
COntinuous Application Platform
Continued

Limitations
There are some limitations in how the CirPoint and the ToPoint can be placed, as
shown in the figure below.

xx1200000175

• Minimum distance between start and ToPoint is 0.1 mm.
• Minimum distance between start and CirPoint is 0.1 mm.
• Minimum angle between CirPoint and ToPoint from the start point is 1 degree.

The accuracy can be poor near the limits, for example, if the start point and the
ToPoint on the circle are close to each other, the fault caused by the leaning of the
circle can be much greater than the accuracy with which the points have been
programmed.
A change of execution mode from forward to backward or vice versa, while the
robot is stopped on a circular path, is not permitted and will result in an error
message.
The instruction CapC (or any other instruction including circular movement) should
never be started from the beginning, with TCP between the circle point and the
end point. Otherwise the robot will not take the programmed path (positioning
around the circular path in another direction compared with that programmed).
Make sure that the robot can reach the circle point during program execution and
divide the circle segment if necessary.
If the current start point deviates from the usual, so that the total positioning length
of the instruction CapC is shorter than usual, it may happen that several or all of
the trigger conditions are fulfilled immediately and at the same position. In such
cases, the sequence in which the trigger activities are carried out will be undefined.
The program logic in the user program may not be based on a normal sequence
of trigger activities for an "incomplete movement".
CapC cannot be executed in a RAPID routine connected to any of the following
special system events: PowerOn, Stop, QStop, Restart, Reset or Step.

Syntax
CapC

[CirPoint ':='] < expression (IN) of robtarget >

[ToPoint ':='] < expression (IN) of robtarget >

['\' Id ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

Continues on next page
Application manual - Continuous Application Platform 59
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction

COntinuous Application Platform
Continued

[Cdata ':='] < persistent (PERS) of capdata >

['\' Movestart_timer ':=' < expression (IN) of num >] ','

[Weavestart ':='] <persistent (PERS) of weavestartdata >

[Weave ':='] < persistent (PERS) of capweavedata >

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

|['\' Corr]

['\' Time ':=' < expression (IN) of num >]

['\' T1 ':=' < variable (VAR) of triggdata >]

['\' TriggArray ':=' < array variable {*} (VAR) of triggdata >
]

['\' T2 ':=' < variable (VAR) of triggdata >]

['\' T3 ':=' < variable (VAR) of triggdata >]

['\' T4 ':=' < variable (VAR) of triggdata >]

['\' T5 ':=' < variable (VAR) of triggdata >]

['\' T6 ':=' < variable (VAR) of triggdata >]

['\' T7 ':=' < variable (VAR) of triggdata >]

['\' T8 ':=' < variable (VAR) of triggdata >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

capdata - CAP data on page 99Definition of CAP data

weavestartdata - weave start data on page117Definition of weave start data

capweavedata - Weavedata for CAP on
page 103

Definition of weave data

Application manual - Controller software
OmniCore

Path Offset

Technical referencemanual - RAPID Instruc-
tions, Functions and Data types

MoveL

60 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.4 CapC - Circular CAP movement instruction
COntinuous Application Platform
Continued

4.1.5 CapEquiDist - Generate equidistant event

Usage
CapEquiDist is used to tell CAP to generate an equidistant RAPID event
(EQUIDIST) on the CAP path. The first event is generated at the startpoint of the
first CAP instruction in a sequence of CAP instructions. From RAPID it is possible
to subscribe this event using ICap.

Basic example
VAR intnum intno_equi;

PROC main()

......

IDelete intno_equi;

Connect intno_equi equi_trp;

ICap intno_equi, EQUIDIST

......

CapEquiDist\Distance:=5.0;

MoveL p60, v1000, fine, tWeldGun;

CapL p_fig3_l_1, v500, cd, wsd, cwd, z10, tWeldGun;

CapL p_fig3_l_2, v500, cd, wsd, cwd, fine, tWeldGun;

......

CapEquiDist\Reset;

MoveL p70, v1000, fine, tWeldGun;

CapL p_fig3_l_3, v500, cd, wsd, cwd, fine, tWeldGun;

......

ERROR

Retry;

ENDPROC

TRAP equi_trp

! do whatever you want, but it must not take too long time

ENDTRAP

In this example, the event EQUIDIST will be generated on the first CAP path. It will
be sent every 5 mm on the path over several CAP instructions with zones.

Arguments
CapEquiDist [\Distance] [\Reset]

[\Distance]
Distance in mm
Data type: num
The data provided with this optional argument defines the distance in mm between
two consecutive equidistant events.

[\Reset]
Reset event generation

Continues on next page
Application manual - Continuous Application Platform 61
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.5 CapEquiDist - Generate equidistant event

Continuous Application Platform

Data type: switch
If this switch is present, the event generation is reset, that is, the equidistant event
will not be generated any longer on a CapL/CapC path. This switch has precedence
before the \Distance switch.

Limitations
If the CAP path is long compared to the event distance, the system can run out of
event resources, and the error message 50368 Too Short distance between
equidistant events.

Syntax
CapEquiDist

['\' Distance ':=' < expression (IN) of num >]

['\' Reset] ';'

62 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.5 CapEquiDist - Generate equidistant event
Continuous Application Platform
Continued

4.1.6 CapInitSupervision - Reset all supervision for CAP

Usage
CapInitSupervision is used to initiate CAP supervision. This means that all
supervision lists will be cleared and all I/O subscriptions will be removed.

Example
PROC main()

CapInitSupervision;

CapSetupSupervision diWR_EST, ACT,SUPERV_MAIN;

CapSetupSupervision diGA_EST, ACT,SUPERV_MAIN;

CapL p2, v100, cdata1, weavestart, weave,fine, tWeldGun;

ENDPROC

CapInitSupervision is used to clear all supervision lists before setting up new
supervision.

Limitations
The CapInitSupervision instruction should be executed only once, for example,
from the startup shelf.

Syntax
CapInitSupervision ';'

Related information

SeeFor information about

CapSetupSupervision - Setup conditions for
signal supervision in CAP on page 82

CapSetupSupervision instruction

CapRemoveSupervision - Remove condition
for one signal on page 78

CapRemoveSupervision instruction

Application manual - Continuous Application Platform 63
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.6 CapInitSupervision - Reset all supervision for CAP

Continuous Application Platform

4.1.7 CapL - Linear CAP movement instruction

Usage
CapL is used to move the tool center point (TCP) linearly to a given destination
and at the same time control a continuous process. Furthermore it is possible to
connect up to eight events to CapL. The events are defined using the instructions
TriggRampAO, TriggIO, TriggEquip, TriggInt, TriggCheckIO, or
TriggSpeed.

Basic examples

Example1
Linear movements with CapL.

CapL p1, v100, cdata, weavestart, weave, z50, gun1;

The TCP of the tool, gun1, is moved linearly to the position p1, with speed defined
in cdata, and zone data z50.

Example 2
Circular movement with user event and CAP event.

VAR intnum start_intno;

...

PROC main()

VAR triggdata gunon;

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveJ p1, v500, z50, gun1;

CapL p2, v500, cdata, wstart, w1, fine, gun1 \T1:=gunon;

ENDPROC

TRAP start_trap

!This routine is executed when event CAP_START arrives

ENDTRAP

The digital output signal gun is set when the robot TCP passes the midpoint of the
corner path of the point p1. The trap routine start_trap is executed when the
CAP process is starting.

xx1200000173

Continues on next page
64 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction
Continuous Application Platform

Arguments
CapL ToPoint [\Id] Speed Cdata [\MoveStartTimer] Weavestart Weave

Zone [\Inpos] Tool [\WObj] [\Corr] [\Time] [\T1] [\TriggArray]
[\T2] [\T3] [\T4] [\T5] [\T6] [\T7] [\T8] [\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

Cdata

(CAP process Data)
Data type: capdata
CAP process data, see capdata - CAP data on page 99 for a detailed description.

[\Movestart_timer]

(Time in s)
Data type: num
Upper limit for the time difference between the order of the process start and the
actual start of the robot's TCP movement in a MultiMove system in synchronized
mode.

Weavestart

(Weavestart Data)
Data type: weavestartdata
Weave start data for the CAP process, see weavestartdata - weave start data on
page 117 for a detailed description.

Weave

(Weave Data)
Data type: capweavedata
Weaving data for the CAP process, see capweavedata - Weavedata for CAP on
page 103 for a detailed description.

Continues on next page
Application manual - Continuous Application Platform 65
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction

Continuous Application Platform
Continued

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type:stoppoint data
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if it is then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used this argument must be specified in order for a circle relative to the
work object to be executed.

[\Corr]

Correction
Data type: switch
Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Corrections is required when using this argument.

[\Time]

Data type: num
This argument is used to specify the total time in seconds during which the robot
and additional axes move. It is then substituted for the corresponding speed data.

[\T1]

Trigg 1
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

Continues on next page
66 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction
Continuous Application Platform
Continued

TriggArray

Trigg Data Array Parameter
Data type: triggdata
Array variable that refers to trigger conditions and trigger activity defined earlier
in the program using the instructions TriggIO, TriggEquip, TriggInt,
TriggSpeed, TriggCheckIO, or TriggRampAO.
The limitation is 25 elements in the array and 1 to 25 defined trigger conditions
must be defined.
It is not possible to use the optional arguments T2, T3, T4, T5, T6, T7, or T8 at the
same time as the TriggArray argument is used.

[\T2]

Trigg 2
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T3]

Trigg 3
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T4]

Trigg 4
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T5]

Trigg 5
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T6]

Trigg 6
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

Continues on next page
Application manual - Continuous Application Platform 67
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction

Continuous Application Platform
Continued

[\T8]

Trigg 8
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\T8]

Trigg 8
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed, or TriggRampAO.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See Technical reference manual - RAPID Instructions, Functions and Data types
for information about the MoveL and TriggL.

Continues on next page
68 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction
Continuous Application Platform
Continued

Error handling
There are several different types of errors that can be handled in the error handler
for the CapC/CapL instructions:

• supervision errors
• sensor specific errors
• errors specific to a MultiMove system
• errors inherited from TriggX functionality
• other CAP errors

If one of the signals that is supposed to be supervised does not have the correct
value, or if it changes value during supervision, the system variable ERRNO is set.
If no values can be read from the track sensor, the system variable ERRNO is set.
For a MultiMove system running in synchronizedmode the error handler must take
care of two other errors. One is used to report that some other application has
detected an recoverable error. This enables recoverable error handling in
synchronized RAPID tasks. The other error, CAP_MOV_WATCHDOG, is reported if
the time between the order of the process start and the actual start of the robot's
TCP movement in a MultiMove system in synchronized mode expires. The time
used is specified in the optional parameter Movestart_timer in the CapL
instruction.
If anything abnormal is detected, program execution will stop. If, however, an error
handler is programmed, the errors defined below can be remedied without stopping
production. However, a recommendation is that some of the errors (the errors with
CAP_XX) these errors should not be presented for the end user. Map those errors
to a application specific error. For the supervision errors the instruction
CapGetFailSigs can be used to get which specific signal that failed.

Supervision errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This error occurs when there is an error in the START_PRE
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
pre_cond time-out).

CAP_START_PRE_ERR

This error occurs when there is an error during the supervi-
sion of the PRE phase.

CAP_PRE_ERR

This event occurs when there is an error in the END_PRE
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
start_cond time-out).

CAP_END_PRE_ERR

This event occurs when there is an error in the START_MAIN
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
start_cond time-out).

CAP_START_MAIN_ERR

This error occurs when there is an error during the supervi-
sion of the MAIN phase.

CAP_MAIN_ERR

Continues on next page
Application manual - Continuous Application Platform 69
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction

Continuous Application Platform
Continued

This error occurs when there is an error in the END_MAIN
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_END_MAIN_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST1_ERR

This error occurs when there is an error during the supervi-
sion of the POST1 phase.

CAP_POST1_ERR

This error occurs when there is an error in the END_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_END_POST1_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST2_ERR

This error occurs when there is an error during the supervi-
sion of the POST2 phase.

CAP_POST2_ERR

This error occurs when there is an error in the END_POST2
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_END_POST2_ERR

If supervision is done on two different signals in the same
phase, and both of them fails, the first one that is setup with
CapSetupSupervision is the one that generates the error.

Sensor related errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Track error occurs when reading data from sensor and after
a time no valid data are received. One reason for this could
be that the sensor cannot indicate the seam.

CAP_TRACK_ERR

Track start error occurs when no valid data has been read
from the laser track sensor.

CAP_TRACKSTA_ERR

Track correction error occurs when something goes wrong
in the calculation of the offset.

CAP_TRACKCOR_ERR

The communication between the robot controller and the
sensor equipment is broken.

CAP_TRACKCOM_ERR

It is not possible to continue tracking, if a power failure oc-
curred during tracking.

CAP_TRACKPFR_ERR

The controller did not get a valid measurement from sensor.CAP_SEN_NO_MEAS

The sensor is not ready yet.CAP_SEN_NOREADY

A general sensor error occurred.CAP_SEN_GENERRO

The sensor is busy and cannot answer the request.CAP_SEN_BUSY

The command sent to the sensor is unknown to sensor.CAP_SEN_UNKNOWN

The variable or block number sent to the sensor is illegal.CAP_SEN_ILLEGAL

An external alarm occurred in the sensor.CAP_SEN_EXALARM

A camera alarm occurred in the sensor.CAP_SEN_CAALARM

Continues on next page
70 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction
Continuous Application Platform
Continued

The sensor temperature is out of range.CAP_SEN_TEMP

The value sent to the sensor is out of range.CAP_SEN_VALUE

The camera check failed.CAP_SEN_CAMCHECK

The sensor did not respond within the time out time.CAP_SEN_TIMEOUT

Errors possible in MultiMove systems
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

When using synchronizedmotion this error is reported when
an application controlling one mechanical unit detects a re-
coverable error and notifies other applications that something
went wrong. If this error code is received from a CapL instruc-
tion, the error is a reaction on another error. All tasks using
movement instructions in synchronizedmode in aMultiMove
system should have this ERRNO value defined in the error
handler.

ERR_PATH_STOP

Errors inherited from TriggX

The instruction CapL is based on the instruction TriggL. As a consequence you
can get and handle the errors ERR_AO_LIM and ERR_DIPLAG_LIM, as in TriggL.
The system variable ERRNO will be set to:

If the programmed ScaleValue/SetValue argument for
the specified analog output signal AOp/AOutput in some
of the connected TriggSpeed/TriggRampAO instructions,
results are out of limit for the analog signal together with the
programmed Speed in this instruction. The system variable
ERRNO is set to ERR_AO_LIM.

ERR_AO_LIM

If the programmed DipLag argument in some of the connec-
ted TriggSpeed instructions, is too big in relation to the
used system parameter Event Preset Time, the system
variable ERRNO is set to ERR_DIPLAG_LIM.

ERR_DIPLAG_LIM

Other CAP errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This recoverable error is generated at the end of the first
CapC/L instruction of a sequence if the optional argument
\PreProcessTracking is used. It can be handled in the
error handler to start the process.

CAP_ATPROC_START

This error occurs when the instruction CapNoProcess is
used to run a certain distance without application process
and the end of this distance is reached. This is not really an
error, but it uses the mechanisms of error recovery.

CAP_NOPROC_END

This error occurs when the switch \Movestart_timer is
specified and the time between the process start
(MAIN_STARTED) and the start of the robot movement ex-
ceeds the time specified with the switch.

CAP_MOV_WATCHDOG

Continues on next page
Application manual - Continuous Application Platform 71
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction

Continuous Application Platform
Continued

CAP process
During continuous execution in both Automode andManualmode, the CAP process
is running, unless it is blocked. That means, that all data controlling the CAP
process (that is, Cdata, Weavestart, Weave and Movestart_timer), are used.
In these modes all CAP trigger activities are carried out, see ICap - connect CAP
events to trap routines on page 88.
In all other execution modes the CAP process is not running, and the CapL
instruction behaves like a MoveL instruction.

Trigger conditions [\T1] to [\T8] and [\TriggArray]
As the trigger conditions are fulfilled when the robot is positioned closer and closer
to the end point, the defined trigger activities are carried out. The trigger conditions
are fulfilled either at a certain distance before the end point of the instruction, or
at a certain distance after the start point of the instruction, or at a certain point in
time (limited to a short time) before the end point of the instruction.
During stepping execution forwards, the I/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at
all are carried out.

Limitations
If the current start point deviates from the usual, so that the total positioning length
of the instruction CapL is shorter than usual (for example, at the start of CapL with
the robot position at the end point), it may happen that several or all of the trigger
conditions are fulfilled immediately and at the same position. In such cases, the
sequence in which the trigger activities are carried out will be undefined. The
program logic in the user program may not be based on a normal sequence of
trigger activities for an "incomplete movement".
The behavior of the CAP process may be undefined if an error occurs during CapL
or CapC instructions with extremely short TCP movements (< 1 mm).
CapL cannot be executed in a RAPID routine connected to any of the following
special system events: PowerOn, Stop, QStop, Restart, Reset or Step.

Syntax
CapL

[ToPoint ':='] < expression (IN) of robtarget >

['\' Id ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata > ','

[Cdata ':='] < persistent (PERS) of capdata >

['\' Movestart_timer ':=' < expression (IN) of num >] ','

[Weavestart ':='] <persistent (PERS) of weavestartdata > ','

[Weave ':='] < persistent (PERS) of capweavedata > ','

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

|['\' Corr]

['\' Time ':=' < expression (IN) of num >]

Continues on next page
72 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction
Continuous Application Platform
Continued

['\' T1 ':=' < variable (VAR) of triggdata >]

['\' TriggArray ':=' < array variable {*} (VAR) of triggdata >
]

['\' T2 ':=' < variable (VAR) of triggdata >]

['\' T3 ':=' < variable (VAR) of triggdata >]

['\' T4 ':=' < variable (VAR) of triggdata >]

['\' T5 ':=' < variable (VAR) of triggdata >]

['\' T6 ':=' < variable (VAR) of triggdata >]

['\' T7 ':=' < variable (VAR) of triggdata >]

['\' T8 ':=' < variable (VAR) of triggdata >]

['\' TLoad':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

capdata - CAP data on page 99Definition of CAP data

weavestartdata - weave start data on page117Definition of weave start data

capweavedata - Weavedata for CAP on
page 103

Definition of weave data

Application manual - Controller software
OmniCore

Path Offset

Technical referencemanual - RAPID Instruc-
tions, Functions and Data types

MoveL

TriggL

Application manual - Continuous Application Platform 73
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.7 CapL - Linear CAP movement instruction

Continuous Application Platform
Continued

4.1.8 CapNoProcess - Run CAP without process

Usage
CapNoProcess is used to run CAP a certain distance without process.
With CapNoProcess, it is possible to tell CAP to execute a certain distance (in
mm) without process. This is useful, if there was a recoverable process error, which
in some way makes it impossible to restart the process at the error location.
In the beginning and at the end of the skip distance, backing on the path
(restart_dist component in capdata) is suppressed.
At the end of the skip distance a error with errno CAP_NOPROC_END is generated.

Basic example
VAR num skip_dist := 0.0;

VAR bool cap_skip := FALSE;

PROC main()

......

skip_dist := 25.0;

CapL p_fig3_l_1, v500, cd, wsd, cwd, fine, tWeldGun;

......

skip_dist := 15.0;

CapL p_fig3_l_3, v500, cd, wsd, cwd, fine, tWeldGun;

......

ERROR

StorePath;

TEST ERRNO

CASE CAP_NOPROC_END:

IF cap_skip THEN

! This is the end of the skip distance

cap_skip := FALSE;

ENDIF

CASE CAP_MAIN_ERR:

IF skip_dist > 0.0 THEN

! This is the start of the skip distance

CapNoProcess skip_dist;

cap_skip := TRUE;

ENDIF

DEFAULT:

ENDTEST

RestoPath;

StartMoveRetry;

ENDPROC

ENDMODULE

In this example, the recoverable error CAP_MAIN_ERR is followed by 25 mm
movement (at 10 mm/s) without process for the first CapL instruction and by 15

Continues on next page
74 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.8 CapNoProcess - Run CAP without process
Continuous Application Platform

mm for the second. At the end of that distance, CAP_NOPROC_END is generated
and the process is restarted.

Arguments
CapNoProcess skip_distance

skip_distance
Distance in mm
Data type: num
CapNoProcess has a num variable as input parameter, that defines the skip distance
in mm.

Limitations
The speed of the TCP during skip is predefined with 10 mm/s. The shortest skip
distance is predefined with 10 mm.
In synchronized MultiMove systems, the shortest distance of all skip distances
defined for the different synchronized process robots will be the actual one.
If the skip distance is longer than the distance from the current TCP position to
the end of the current sequence of CAP instructions, nothing special will happen:
RAPID execution continues as usual, without stopping the robot.

Syntax
CapNoProcess

[skip_dist ':='] < variable (IN) of num >';'

Related information

SeeFor information about

CapInitSupervision - Reset all supervision
for CAP on page 63

CapInitSupervision instruction

CapSetupSupervision - Setup conditions for
signal supervision in CAP on page 82

CapSetupSupervision instruction

CapRemoveSupervision - Remove condition
for one signal on page 78

CapRemoveSupervision instruction

Application manual - Continuous Application Platform 75
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.8 CapNoProcess - Run CAP without process

Continuous Application Platform
Continued

4.1.9 CapRefresh - Refresh CAP data

Usage
CapRefresh is used to tell the CAP process to refresh its process data. It can for
example, be used to tune CAP process parameters during program execution.

Basic example
PROC PulseSpeed()

! Setup a 1 Hz timer interrupt

CONNECT intno1 WITH TuneTrp;

ITimer 1, intno1;

CapL p1, v100, cdata, wstartdata, wdata, fine, gun1;

IDelete intno1;

ENDPROC

TRAP TuneTrp

! Modify the main speed component of active cdata

IF HighValueFlag = TRUE THEN

cdata.speed_data.start := 10;

HighValueFlag := FALSE;

ELSE

cdata.speed_data.start := 15;

HighValueFlag := TRUE;

ENDIF

! Order the process control to refresh process parameters

CapRefresh;

ENDTRAP

In this example the speed will be switched between 10 and 15 mm/s at a rate of 1
Hz.

Arguments
CapRefresh [\MainSpeed] [\MainWeave] [\StartWeave] [\RestartDist]

Without optional argument the CAP data capdata, capweavedata,
weavestartdata, captrackdata, and movestarttimer are - if present - re-read
from the PERSISTENT RAPID variable specified in the currently active CAP
instruction.

[\MainSpeed]
Data type: switch
If this switch is present, CAP will reread the component
capdata.speed_data.main of the currently active CAP instruction.

[\MainWeave]
Data type: switch
If this switch is present, CAP will reread the components capweavedata.width,
capweavedata. length, capweavedata.bias, and capweavedata.active
of the currently active CAP instruction.

Continues on next page
76 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.9 CapRefresh - Refresh CAP data
Continuous Application Platform

[\StartWeave]
Data type: bool
If this switch is present, CAPwill use its value instead of weavestartdata.active
of the currently active CAP instruction. The data of the currently active CAP
instruction remain untouched.

[\RestartDist]
Data type: num
If this switch is present, CAP will use its value instead of capdata.restart_dist
of the currently active CAP instruction. The data of the currently active CAP
instruction remain untouched.

Syntax
CapRefresh

['\' MainSpeed]

['\' MainWeave]

['\' Startweave ':=' < expression (IN) of bool >]

['\' RestartDist ':=' < expression (IN) of num >] ';'

Application manual - Continuous Application Platform 77
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.9 CapRefresh - Refresh CAP data

Continuous Application Platform
Continued

4.1.10 CapRemoveSupervision - Remove condition for one signal

Usage
CapRemoveSupervision is used to remove conditions added by CapSetupSuperv
from supervision.

Basic example
PROC main()

CapInitSupervision;

CapSetupSupervision diWR_EST, ACT, SUPERV_MAIN \ErrIndSig:=
do_WR_Sup;

CapSetupSupervision diGA_EST, ACT, SUPERV_MAIN;

CapL p2, v100, cdata1, weavestart, weave,fine, tWeldGun;

CapRemoveSupervision di_Arc_Sup, ACT, SUPERV_START_MAIN;

ENDPROC

Removes the signal di_Arc_Sup from the START list.

Arguments
CapRemoveSupervision Signal Condition Listtype [\Deactivate]

Signal
Data type: signaldi
Digital signal to remove from supervision list.

Condition
Data type: num
The name representing one of the following available conditions:

Used for status supervision. Expected signal status during supervi-
sion: active. If the signal becomes passive, supervision triggers.

ACT:

Used for status supervision. Expected signal status during supervi-
sion: passive. If the signal becomes active, supervision triggers.

PAS:

Used for handshake supervision. Expected signal status at the end
of supervision: active. If the signal does not become active within
the chosen timeout, supervision triggers.

POS_EDGE:

Used for handshake supervision. Expected signal status at the end
of supervision: passive. If the signal does not become passive
within the chosen timeout, supervision triggers.

NEG_EDGE:

Listtype
Data type: num
The name representing the number of the different lists (for example, phases in
the process):

• SUPERV_START_PRE
• SUPERV_PRE
• SUPERV_END_PRE
• SUPERV_START_MAIN
• SUPERV_MAIN
• SUPERV_END_MAIN

Continues on next page
78 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.10 CapRemoveSupervision - Remove condition for one signal
Continuous Application Platform

• SUPERV_START_POST1
• SUPERV_POST1
• SUPERV_END_POST1
• SUPERV_START_POST2
• SUPERV_POST2
• SUPERV_END_POST2

[\Deactivate]
Data type: switch
If this switch is present, CAP will not only remove the specified supervision, it will
also deactivate it immediately, if active.

Syntax
CapRemoveSupervision

[Signal ':='] < variable (VAR) of signaldi > ','

[Condition ':='] < variable (IN) of num > ','

[Listtype ':='] < variable (IN) of num >

['\' Deactivate] ';'

Related information

SeeFor information about

CapInitSupervision - Reset all supervision
for CAP on page 63

CapInitSupervision instruction

CapSetupSupervision - Setup conditions for
signal supervision in CAP on page 82

CapSetupSupervision instruction

Application manual - Continuous Application Platform 79
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.10 CapRemoveSupervision - Remove condition for one signal

Continuous Application Platform
Continued

4.1.11 CapSetDOAtStop - Set a digital output signal at TCP stop

Usage
CapSetDOAtStop is used to define a digital output signal and its value, which will
be set when the TCP of the robot that runs CAP, stops moving during a CAP
instruction (CapL or CapC) before the CAP sequence is finished.
An existing definition of such signals, is cleared with the CAP instruction
CapInitSupervision.

Basic example
CapSetDOAtStop do15, 1;

The signal do15 is set to 1 when the TCP stops.
CapSetDOAtStop weld, off;

The signal weld is set to off when the TCP stops.

Arguments
CapSetDOAtStop Signal Value

Signal
Data type: signaldo
The name of the signal to be changed.

Value
Data type: dionum
The desired value of the signal 0 or 1.

Set digital output toSpecified Value

00

1Any value except 0

Limitations
The final value of the signal depends on the configuration of the signal. If the signal
is inverted in the system parameters, the value of the physical channel is the
opposite.
A maximum of 10 signals per RAPID task may be set up.

Syntax
CapSetDOAtStop

[Signal ':='] < variable (VAR) of signaldo > ','

[Value ':='] < expression (IN) of dionum > ';'

Related information

SeeFor information about

CapInitSupervision - Reset all supervision
for CAP on page 63

CapInitSupervision instruction

CapSetupSupervision - Setup conditions for
signal supervision in CAP on page 82

CapSetupSupervision instruction

Continues on next page
80 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.11 CapSetDOAtStop - Set a digital output signal at TCP stop
Continuous Application Platform

SeeFor information about

CapRemoveSupervision - Remove condition
for one signal on page 78

CapRemoveSupervision instruction

Application manual - Continuous Application Platform 81
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.11 CapSetDOAtStop - Set a digital output signal at TCP stop

Continuous Application Platform
Continued

4.1.12 CapSetupSupervision - Setup conditions for signal supervision in CAP

Usage
CapSetupSupervision is used to set up conditions for I/O signals to be
supervised. The conditions are collected in different lists:

• START_PRE
• PRE
• END_PRE
• START_MAIN
• MAIN
• END_MAIN
• START_POST1
• POST1
• END_POST1
• START_POST2
• POST2
• END_POST2

For more information about supervision lists see Application manual - Continuous
Application Platform.
As an optional parameter an out signal can be specified. This out signal is set to
high, if the given condition fails.

Basic example
PROC main()

CapInitSupervision;

CapSetupSupervision diWR_EST, ACT, SUPERV_MAIN \ErrIndSig:=
do_WR_Sup;

CapSetupSupervision diGA_EST, ACT, SUPERV_MAIN;

CapL p2, v100, cdata1, weavestart, weave, fine, tWeldGun;

ENDPROC

CapSetupSupervision is used to set up supervision on signals. If signal
diWR_EST fails during SUPERV_MAIN phase, the digital output signal do_WR_Sup
is set high.
The CapSetupSupervision instruction should be executed only if supervision
data is changed. If the supervision data is never changed, it is a good idea to put
it into a module, that is executed from the startup shelf.

Arguments
CapSetupSupervision Signal Condition Listtype [\ErrIndSig]

Signal
Data type: signaldi
Digital signal to be supervised.

Continues on next page
82 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.12 CapSetupSupervision - Setup conditions for signal supervision in CAP
Continuous Application Platform

Condition
Data type: num
The name representing one of the following available conditions:

Used for status supervision. Expected signal status during supervi-
sion: active. If the signal becomes passive, supervision triggers.

ACT:

Used for status supervision. Expected signal status during supervi-
sion: passive. If the signal becomes active, supervision triggers.

PAS:

Used for handshake supervision. Expected signal status at the end
of supervision: active. If the signal does not become active within
the chosen timeout, supervision triggers.

POS_EDGE:

Used for handshake supervision. Expected signal status at the end
of supervision: passive. If the signal does not become passive
within the chosen timeout, supervision triggers.

NEG_EDGE:

Listtype
Data type: num
The name representing the number of the different lists (for example, phases in
the process):

• SUPERV_START_PRE
• SUPERV_PRE
• SUPERV_END_PRE
• SUPERV_START_MAIN
• SUPERV_MAIN
• SUPERV_END_MAIN
• SUPERV_START_POST1
• SUPERV_POST1
• SUPERV_END_POST1
• SUPERV_START_POST2
• SUPERV_POST2
• SUPERV_END_POST2

[\ErrIndSig]
Data type: signaldo
Used to indicate which condition that failed if a failure has occurred. When the
failure occurs the value on this signal is set to 1. This is an optional parameter.

Program execution
The given signal and its condition is added to the selected list. If a signal fails, the
CapL/CapC instruction will report that a supervision error occurred during the
specified phase and which signal(s) failed.

Errors

CAP_SPV_LIM
The maximum number of supervisions set up is exceeded.

Continues on next page
Application manual - Continuous Application Platform 83
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.12 CapSetupSupervision - Setup conditions for signal supervision in CAP

Continuous Application Platform
Continued

CAP_SPV_UNK_LST
The supervision list is unknown.

Limitations
Only digital input signals can be supervised.
Status supervision applies for a complete sequence of CAP instructions, see
Supervision and process phases on page 18.

Syntax
CapSetupSupervision

[Signal ':='] < variable (VAR) of signaldi > ','

[Condition ':='] < variable (IN) of num > ','

[Listtype ':='] < variable (IN) of num >

[\ErrIndSig ':=' < variable (VAR) of signaldo >] ';'

Related information

SeeFor information about

CapInitSupervision - Reset all supervision
for CAP on page 63

CapInitSupervision instruction

CapRemoveSupervision - Remove condition
for one signal on page 78

CapRemoveSupervision instruction

84 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.12 CapSetupSupervision - Setup conditions for signal supervision in CAP
Continuous Application Platform
Continued

4.1.13 CapWeaveSync - set up signals and levels for weave synchronization

Usage
CapWeaveSync is used to setup weaving synchronization signals without sensors.
The I/O signals must be defined in EIO.cfg.

Basic example
RAPID program:

PROC main()

...

CapWeaveSync \DoLeft:=do_sync_left \LevelLeft:=80
\DoRight:=do_sync_right \LevelRight:=80;

...

ENDPROC

In this example the signals do_sync_left and do_sync_right are set up with
weaving level 80%.
The CapWeaveSync instruction should be executed only once, for example, from
the startup shelf.

Arguments
CapWeaveSync [\Reset] [\DoLeft] [\LevelLeft] [\DoRight]

[\LevelRight]

[\Reset]
Data type: switch
Clear weave synchronization data.

[\DoLeft]
Data type: signaldo
Digital output signal for weave synchronization on the left weave cycle.

[\LevelLeft]
Data type: num
The coordination position on the left side of the weaving pattern. The value specified
is a percentage of the width on the left of the weaving centre. When weaving is
carried out beyond this point, a digital output signal is automatically set high (if the
signal is defined).
This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000176

[\LevelLeft]
Data type: num

Continues on next page
Application manual - Continuous Application Platform 85
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.13 CapWeaveSync - set up signals and levels for weave synchronization

Continuous Application Platform

The coordination position on the left side of the weaving pattern. The value specified
is a percentage of the width on the left of the weaving centre. When weaving is
carried out beyond this point, a digital output signal is automatically set high (if the
signal is defined).
This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000176

[\DoRight]
Data type: signaldo
Digital output signal for weave synchronization on the right weave cycle.

[\LevelRight]
Data type: num
The coordination position on the right side of the weaving pattern. The value
specified is a percentage of the width on the right of the weaving centre. When
weaving is carried out beyond this point, a digital output signal is automatically set
high (provided the signal is defined).
This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000177

Program execution
The defined signals are checked and set when running without a sensor.

Limitations
The signals must be defined in EIO.cfg.
It is not possible to use only either level or corresponding signal. It will not result
in errors when loading the RAPID file, but it will result in RAPID run-time errors for
the instruction CapWeaveSynch.

Syntax
CapWeaveSync

['\' Reset]

[DoLeft ':=' < expression (IN) of signaldo >]

[LevelLeft ':=' < expression (IN) of num >]

[DoRight ':=' < expression (IN) of signaldo >]

[LevelRight ':=' < expression (IN) of num >] ';'

Continues on next page
86 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.13 CapWeaveSync - set up signals and levels for weave synchronization
Continuous Application Platform
Continued

Related information

SeeFor information about

capweavedata - Weavedata for CAP on
page 103

capweavedata data type

Application manual - Continuous Application Platform 87
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.13 CapWeaveSync - set up signals and levels for weave synchronization

Continuous Application Platform
Continued

4.1.14 ICap - connect CAP events to trap routines

Usage
ICap is used to connect an interrupt number (which is already connected to a trap
routine) with a specific CAP Event, see Arguments below for a listing of available
Events. When using ICap, an association between a specific process event and
a user defined Trap routine is created. In other words, the Trap routine in question
is executed when the associated CAP event occurs.
We recommend placing the traps in a background task.

Basic example
Below is an example where the CAP Event CAP_START is associated with the
trap routine start_trap.

VAR intnum start_intno:=0;

...

TRAP start_trap

! This routine will be executed when the event CAP_START is
reported from the core

! Do what you want to do

ENDTRAP

PROC main()

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

CapL p1, v100, cdata, weavestart, weave, z50, gun1;

ENDPROC

Arguments
ICap Interrupt Event

Interrupt
Data type: intnum
The interrupt identity. This should have previously been connected to a trap routine
by means of the instruction CONNECT.

Event
Data type: num
The CAP event number to be associated with the interrupt. These events are
predefined constants.

Continues on next page
88 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.14 ICap - connect CAP events to trap routines
Continuous Application Platform

Available CAP events
To see the events listed according to phases, see sectionCoupling between phases
and events on page 24.

DescriptionEvent
number

PhaseEvents

This event occurs after restart, when the
TCP reaches the position of the supervi-
sion error.

28MAINAT_ERRORPOINT

This event occurs at every robtarget on
the process path except the start and fin-
ish point.

13MAINAT_POINT

This event occurs when the robot has
jogged back, the restart distance, on the
process path after a stop.

14MAINAT_RESTARTPOINT

This event occurs when restart is ordered.26MAINCAP_PF_RESTART

This event occurs as soon as the CAP
process is started.

0CAP_START

This event is a required event. If any other
event is used, this event must be defined
too. The event/trap is executed as soon
as possible after the controller is stopped
due to an error or a program stop. An er-
ror can be a recoverable error detected
in CAP, a fatal error detected in CAP or
an internal error stopping the controller.
The code executed in this trap should
take all external equipment to a safe state,
for example, reset all external I/O-signals.
Keep in mind that TRAP execution is
stopped when RAPID execution of a
NORMAL task is stopped. Therefore the
TRAP connected to CAP_STOP has to be
placed in a STATIC or SEMISTATIC task.

25CAP_STOP

This event occurs at the point on the
process path where supervision of the
end sequence is started, that is, when the
robot reaches the end point of the pro-
cess.

17END_MAINEND_MAIN

This event occurs when it is time to end
the POST1 phase, that is, when it is time
to change from the POST1 to the
POST2-phase. If using a flying end no
event is distributed.

21END_POST1END_POST1

This event occurs when the POST2 phase
is at an end, that is, when it is time to fi-
nally finish the process. If using a flying
end no event is distributed.

23END_POST2END_POST2

This event occurs when the supervision
of the PRE-phase, if present, is activated.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

32PREEND_PRE

This event is sent, if it is ordered with the
instruction CapEquiDist.

27MAINEQUIDIST

Continues on next page
Application manual - Continuous Application Platform 89
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.14 ICap - connect CAP events to trap routines

Continuous Application Platform
Continued

DescriptionEvent
number

PhaseEvents

This event occurs when using flying end.
This event is only available with flying
end.

30MAINFLY_END

This event occurs when using flying start.
This event is only available with flying
start.

29MAINFLY_START

This event occurs when RAPID execution
of the last CAP instruction is finished
during flying end. This event is only
available with flying end.

31MAINLAST_INSTR_ENDED

This event occurs at the starting point of
the last segment.

15MAINLAST_SEGMENT

This event occurs when all conditions of
the END_MAIN supervision list are ful-
filled, that is, when the main process is
considered ended.

18END_MAINMAIN_ENDED

This event occurs when main motion is
activated with the process running.

9MAINMAIN_MOTION

This event occurs when all conditions of
the START Supervision list are fulfilled,
that is, when the MAIN-phase is started.

4STARTMAIN_STARTED

This event occurs after the delay, if any,
of motion start. If using a flying start no
event is distributed, because there is a
TCP movement already. At a restart this
event is distributed.

7MAINMOTION_DELAY

This event occurs as soon as the robot
starts moving along the process path. If
using a flying start no event is distributed,
because there is a TCP movement
already. At a restart this event is distrib-
uted.

10MAINMOVE_STARTED

This event occurs when a new CapL or
CapC instruction is fetched from the
RAPID program.

12MAINNEW_INSTR

This event occurs when the robot reaches
the end point of the path, that is, the fine
point or the middle of the zone (for flying
end) in the last CAP instruction.

19PATH_END_POINT

This event occurs when all the conditions
of the END_POST1 supervision list are
fulfilled, that is, when the POST1 phase
is successfully ended and the POST2
phase is started. If using a flying end no
event is distributed.

22END_POST1POST1_ENDED

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

35POST1POST1_STARTED

Continues on next page
90 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.14 ICap - connect CAP events to trap routines
Continuous Application Platform
Continued

DescriptionEvent
number

PhaseEvents

This event occurs when all the conditions
of the END_POST2 supervision list are
fulfilled, that is, when the POST2 phase,
and thus the whole process, is success-
fully ended. If using a flying end no event
is distributed.

24END_POST2POST2_ENDED

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

37POST2POST2_STARTED

This event occurs when the supervision
of the PRE-phase, if present, is activated.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

33PREPRE_ENDED

This event occurs when all the require-
ments of the PRE Supervision list are
fulfilled, that is, when the
PRE_START-phase is started. If using a
flying start no event is distributed, be-
cause there is a TCP movement already.
At a restart this event is distributed.

2PREPRE_STARTED

This event occurs when the robot reaches
the end point of the process, that is,
where the process is supposed to be
ended. If using a flying end no event is
distributed.

16MAINPROCESS_END_POINT

This event occurs only when both the
process is ended at the fine point or the
middle of the zone (for flying end) in the
last CAP instruction.

20PROCESS_ENDED

This event occurs when restart is ordered.11MAINRESTART

This event occurs when the
PRE_START-phase is ended and the
MAIN-phase is started.

3STARTSTART_MAIN

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

34POST1START_POST1

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

36POST2START_POST2

This event occurs when the supervision
of the PRE-phase, if present, is activated.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

1PRESTART_PRE

Continues on next page
Application manual - Continuous Application Platform 91
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.14 ICap - connect CAP events to trap routines

Continuous Application Platform
Continued

DescriptionEvent
number

PhaseEvents

This event occurs when the time to use
Start Speed runs out and it is time to
switch to main motion data.

8MAINSTARTSPEED_TIME

This event occurs, before each weave
start - but only if weave start is ordered.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

5MAINSTOP_WEAVESTART

This event occurs when the robot has re-
gained back to the path after a weave
start. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

6MAINWEAVESTART_REGAIN

Limitations
The same variable for interrupt identity cannot be used more than once, without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

PROC setup_events ()

VAR intnum start_intno;

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

ENDPROC

All activation of interrupts is done at the beginning of the program. These
instructions are then kept outside themain flow of the program. The ICap instruction
should be executed only once, for example, from the startup system event routine.
A recommendation is that the traps should be placed in a background task.

Syntax
ICap

[Interrupt ':='] < variable (IN) of intnum > ','

[Event ':='] < variable (IN) of num > ';'

Related information

SeeFor information about

Technical referencemanual - RAPID Instruc-
tions, Functions and Data types

CONNECT

IDelete

intnum

92 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.14 ICap - connect CAP events to trap routines
Continuous Application Platform
Continued

4.1.15 ICapPathPos - Get center line robtarget when weaving

Usage
ICapPathPos is used to retrieve the position of the center line during weaving
with CAP.
This function is mainly used together with the tracking functionality. It is necessary
to activate weaving and the synchronization signals on both the left side and the
right side.

Basic example
connect intpt, TRP_ipathpos ICapPathPos p_robt, sen_pos, intpt;

When p_robt gets a new calculated value, the interrupt intpt will be sent, and
the trap routine TRP_ipathpos will be executed.

Arguments
ICapPathPos p_robt, sen_pos, intpt [\NoDispl] [\EOffs]

p_robt
Data type: robtarget
p_robt keeps the latest value of the calculated robtarget.

sen_pos
Data type: pos
sen_pos is not used.

intpt
Data type: intno
intpt specifies the interrupt that will be received each time a new value is assigned
to p_robt.

[\NoDispl]
Data type: switch
If \NoDispl is specified, the value returned in the PERS p_robt will not include
any displacement that might be specified using the RAPID instructions PDispSet
and PDispOn.

[\EOffs]
Data type: switch
If [\EOffs] is specified, the value returned in the PERS p_robt will include any
offset specified using the RAPID instruction EOffsSet.

Limitations
It is necessary to activate weaving and weave synchronization (with or without
tracking).

Syntax
ICapPathPos

[p_robt ':='] < persistent (PERS) of robtarget > ','

Continues on next page
Application manual - Continuous Application Platform 93
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.15 ICapPathPos - Get center line robtarget when weaving

Continuous Application Platform

[sen_pos ':='] < persistent (PERS) of pos > ','

[Interrupt ':='] < variable (IN) of intnum >

['\' EOffs]

['\' NoDispl] ';'

Related information

SeeFor information about

CapWeaveSync - set up signals and levels
for weave synchronization on page 85

CapWeaveSync instruction

94 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.1.15 ICapPathPos - Get center line robtarget when weaving
Continuous Application Platform
Continued

4.2 Functions

4.2.1 CapGetFailSigs - Get failed I/O signals

Usage
CapGetFailSigs is used to return the names on the signal or signals that failed
during supervision of CapL or CapC.
If supervision of one or several signals fails during the process a recoverable error
will be returned from the CapL/CapC instruction. To determine which signal or
signals that failed, CapGetFailSigs can be used in an error handler for all cases
of supervision errors.

Basic example
Stringcopied := CapGetFailSigs(Failstring);

Stringcopied is assigned the value TRUE if the copy succeeds, and FALSE if it
fails.
Failstring contains the signals that failed as text. If no string could be copied
the string EMPTY is returned.

Return value
Data type: bool
TRUE or FALSE depending on if the fail string is modified.

Arguments
CapGetFailSigs (ErrorNames)

ErrorNames
Data type: string
CapGetFailSigs requires a string variable as input parameter.

Limitations
If many signals in a supervision list failed at the same time, only three of them are
reported with CapGetFailSigs.

Syntax
CapGetFailSigs '('

[ErrorNames ':='] < variable (INOUT) of string >')'

A function with a return value of the data type bool.

Related information

SeeFor information about

CapInitSupervision - Reset all supervision
for CAP on page 63

CapInitSupervision instruction

CapSetupSupervision - Setup conditions for
signal supervision in CAP on page 82

CapSetupSupervision instruction

Continues on next page
Application manual - Continuous Application Platform 95
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.2.1 CapGetFailSigs - Get failed I/O signals

Continuous Application Protocol

SeeFor information about

CapRemoveSupervision - Remove condition
for one signal on page 78

CapRemoveSupervision instruction

96 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.2.1 CapGetFailSigs - Get failed I/O signals
Continuous Application Protocol
Continued

4.3 Data types

4.3.1 capaptrreferencedata - Variable setup data for At-Point-Tracker

Usage
capaptrreferencedata is used to setup the needed information for the
At-Point-Tracker correction process setup by the CapAPTrSetupAO,
CapAPTrSetupAI, and CapAPTrSetupPERS instructions.

Components

reference_y

Data type: num
Defines the reference for the Y position.

reference_z

Data type: num
Defines the reference for the Z position.

threshold_y

Data type: num
The difference between the input signal and the reference_y value must be
greater than the threshold_y value for the regulator to react on the change.

threshold_z

Data type: num
The difference between the input signal and the reference_z value must be
greater than the threshold_z value for the regulator to react on the change.

gain_y

Data type: num
The difference between the reference_y value and the input signal value is scaled
with the gain_y value.

gain_z

Data type: num
The difference between the reference_z value and the input signal value is scaled
with the gain_z value.

Structure
< data object of capaptrreferencedata >

< reference_y of num >

< reference_z of num >

< threshold_y of num >

< threshold_z of num >

< gain_y of num >

< gain_z of num >

Continues on next page
Application manual - Continuous Application Platform 97
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.1 capaptrreferencedata - Variable setup data for At-Point-Tracker

Continuous Application Platform

Related information

SeeFor information about

CapAPTrSetupAI - Setup an At-Point-Tracker
controlled by analog input signals on page 41

Instruction CapAPTrSetupAI

CapAPTrSetupAO - Setup an At-Point-Tracker
controlled by analog output signals on page 44

Instruction CapAPTrSetupAO

CapAPTrSetupPERS - Setup an At-Point-Tracker
controlled by persistent variables on page 47

Instruction CapAPTrSetupPERS

Application manual - Controller software Omni-
Core

Sensor Interface

98 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.1 capaptrreferencedata - Variable setup data for At-Point-Tracker
Continuous Application Platform
Continued

4.3.2 capdata - CAP data

Usage
capdata contains all data necessary for defining the behavior of the CAP process.

Components

start_fly
Flying start
Data type: bool
Defines whether or not flying start is used:

ConsequenceValue

flying start is usedTRUE

flying start is NOT usedFALSE

Flying start means that the robot movement is started before the process is started.
The process is then started on the run (see flypointdata - Data for flying start/end
on page 109).

first_instr
First instruction
Data type: bool
Defines whether or not a CapL/CapC instruction is the first instruction in a sequence
of CapL/CapC instructions:

ConsequenceValue

this is the first instruction in a sequence of CapL/CapC instructionsTRUE

this is not the first instruction in a sequence of CapL/CapC instruc-
tions

FALSE

last_instr
Last instruction
Data type: bool
Defines whether or not a CapL/CapC instruction is the last instruction in a sequence
of CapL/CapC instructions:

ConsequenceValue

this is the last instruction in a sequence of CapL/CapC instructionsTRUE

this is not the last instruction in a sequence of CapL/CapC instruc-
tions

FALSE

restart_dist
Restart distance, unit: mm
Data type: num
Defines the distance the robot has to back along the path, when it is restarted after
having encountered a stop when a CAP process was active.
In MultiMove systems all synchronized robots must use the same restart distance.

Continues on next page
Application manual - Continuous Application Platform 99
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.2 capdata - CAP data

Continuous Application Platform

speed_data
Speed data for CAP
Data type: capspeeddata
Defines all CAP data concerning speed (see capspeeddata - Speed data for CAP
on page 102).

start_fly_point
Data type: flypointdata
These data are only taken into account when start_fly is TRUE.
Defines flying start information for the CAP process (see flypointdata - Data for
flying start/end on page 109.)

end_fly_point
Data type: flypointdata
These data are only taken into account when end_fly is TRUE.
Defines flying end information for the CAP process (see flypointdata - Data for
flying start/end on page 109.)

sup_timeouts
Data type: supervtimeouts
Defines the timeouts used for all handshake supervision phases (see
supervtimeouts - Handshake supervision time outs on page 115 and section
Supervision in Application manual - Continuous Application Platform).

proc_times
Data type: processtimes
Defines the timeouts used for the status supervision phases PRE, POST1, and
POST2 (see processtimes - process times on page 112 and section Supervision
and process phases in Application manual - Continuous Application Platform).

block_at_restart
Data type: restartblkdata
Defines the behavior of the CAP process during a restart (see restartblkdata -
blockdata for restart on page 113).

Structure
< data object of capdata >

< start_fly of bool >

< first_instr of bool >

< last_instr of bool >

< restart_dist of num >

< speed_data of capspeeddata >

< fly_start of num >

< start of num >

< startspeed_time of num >

< startmove_delay of num >

< main of num >

< fly_end of num >

Continues on next page
100 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.2 capdata - CAP data
Continuous Application Platform
Continued

< start_fly_point of flypointdata >

< time_before of num >

< distance of num >

< end_fly_point of flypointdata >

< time_before of num >

< distance of num >

< sup_timeouts of supervtimeouts >

< pre_cond of num >

< start_cond of num >

< end_main_cond of num >

< end_post1_cond of num >

< end_post2_cond of num >

< proc_times of processtimes >

< pre of num >

< post1 of num >

< post2 of num >

< block_at_restart of restartblkdata >

< weave_start of bool >

< motion_delay of bool >

< pre_phase of bool >

< startspeed_phase of bool >

< post1_phase of bool >

< post2_phase of bool >

Related information

Described in:

capspeeddata - Speed data for CAP on
page 102

capspeeddata data type

flypointdata - Data for flying start/end on
page 109

flypointdata data type

supervtimeouts - Handshake supervision time
outs on page 115

supervtimeouts data type

processtimes - process times on page 112processtimes data type

restartblkdata - blockdata for restart on
page 113

block_at_restart data type

CapL - Linear CAP movement instruction on
page 64

CapL instruction

CapC - Circular CAP movement instruction
on page 50

CapC instruction

Application manual - Continuous Application Platform 101
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.2 capdata - CAP data

Continuous Application Platform
Continued

4.3.3 capspeeddata - Speed data for CAP

Usage
capspeeddata is used to define all data concerning velocity for a CAP process -
it is part of capdata and defines all velocity data and process times needed for a
CAP process:

• velocity and how long this velocity shall be used at the start of the CAP
process,

• delay for the movement of the robot relative the start of the CAP process,
• velocity for the CAP process,

The velocity is restricted by the performance of the robot. This differs, depending
on the type of robot and the path of movement.

Components

start
Data type: num
Velocity (in mm/s) used at the start of the CAP process.

startspeed_time
Data type: num
The time (in seconds) to run at start velocity.

startmove_delay
Data type: num
The time (in seconds) that the robot movement is delayed relative the start of the
CAP process.

main
Data type: num
The main CAP process velocity (mm/s).

Structure
< data object of capspeeddata >

< start of num >

< startspeed_time of num >

< startmove_delay of num >

< main of num >

Related information

Described in:

capdata - CAP data on page 99capdata data type

102 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.3 capspeeddata - Speed data for CAP
Continuous Application Platform

4.3.4 capweavedata - Weavedata for CAP

Usage
capweavedata is used to define weaving for a CAP process during its MAIN phase
(see Application manual - Continuous Application Platform).

Description of weaving
Weaving is superimposed on the basic path of the process. That means, that the
process speed (defined in capspeeddata) is kept as defined, but the TCP speed
is increased unless the physical robot limitations are reached.
Available weaving types:

• geometric weaving: most accurate shape
• wrist weaving: only robot axis 6 is used for weaving
• rapid weaving: geometric weaving but specifying weaving frequency instead

of length
Available weaving shapes:

• Zig-zag weaving
• V-shaped weaving
• Triangular weaving
• Circular weaving

All capweavedata components apply to the MAIN phase.

Components
The path coordinate system is defined by:

• X: path/movement direction
• Z: tool z-direction
• Y: perpendicular to both X and Z as to build a right-handed coordinate system

active
Data type: bool

DescriptionValue

Perform weaving during the MAIN phase of the CAP processTRUE

DoNOT performweaving during theMAIN phase of the CAP processFALSE

width
Data type: num
For circular weaving, width is the radius of the circle (W in the following figure).
For all other weaving shapes, width is the total amplitude of the weaving pattern.

YW

XW

YW

XW

w

w

xx1200000721

Continues on next page
Application manual - Continuous Application Platform 103
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.4 capweavedata - Weavedata for CAP

Continuous Application Platform

shape
Data type: num
The shape of the weaving pattern in the main phase.

ResultShape geometryValue

No weaving0

Weaving horizontal to the seamZig-zag weaving1
YW

XW

ZW

XW

ZW

YW

xx1200000714

Weaving in the shape of a "V", ver-
tical to the seam

V-shaped weaving2
YW

XW

ZW

XW

ZW

YW

xx1200000715

A triangular shape, vertical to the
seam

Triangular weaving3
YW

XW

ZW

XW

ZW

YW

xx1200000716

A circular shape, vertical to the
seam

Circular weaving
(Only available with geometric
weaving, weaving type 0)

4
YW

XW

ZW

XW

ZW

YW

xx1200000717

type
Data type: num
Defines what axes are used for weaving during the MAIN phase

Weaving typeSpecified value

Geometric weaving. All axes are used during weaving.0

Wrist weaving. Mainly axis 4, 5 and 6 are used during weaving.1

Rapid weaving. Mainly axis 4, 5 and 6 are used during weaving, but
weaving frequency is specified instead of weaving length.

2

length
Data type: num
Defines the length of the weaving cycle in the MAIN phase for geometric weaving
(type = 0) and wrist weaving (type = 1). The length argument is not used for the
other weaving types.
For circular weaving the length component defines the distance between two
successive circles (L) if the cycle_time argument is set to 0. The TCP rotates

Continues on next page
104 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.4 capweavedata - Weavedata for CAP
Continuous Application Platform
Continued

left with a positive length value, and right with a negative length value. If
cycle_time has a value then length is not used.

xx1200000187

cycle_time
Data type: num
Defines the weaving frequency (in Hz) in the MAIN phase for of Rapid weaving
types and for circular weaving. The cycle_time argument is not used for the other
weaving types.
For circular weaving the cycle_time argument defines the number of circles per
second. The TCP rotates left with a positive cycle_time value, and right with a
negative cycle_time value. If cycle_time has a value then length is not used.

xx1200000188

height
Data type: num
Defines the height of the weaving pattern (in mm) during V-shaped and triangular
weaving.
Not available for circular weaving.

ZW

YW

ZW

YW

H

xx1200000722

Continues on next page
Application manual - Continuous Application Platform 105
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.4 capweavedata - Weavedata for CAP

Continuous Application Platform
Continued

dwell_left
Data type: num
The length of the dwell (DL) used to force the TCP to move only in the direction of
the seam at the left turning point of the weave. Not available for circular weaving.

YW

XW

YW

XW

DL

A B

DL

xx1200000723

Zigzag and V-shaped weavingA

Triangular weavingB

dwell_center
Data type: num
The length of the dwell (DC) used to force the TCP to move only in the direction
of the seam at the center point of the weave. Not available for circular weaving.

YW

XW

YW

XW

DC DC

A B

DC

xx1200000724

Zigzag and V-shaped weavingA

Triangular weavingB

dwell_right
Data type: num
The length of the dwell (DR) used to force the TCP to move only in the direction
of the seam at the right turning point of the weave. Not available for circular weaving.

YW

XW

YW

XW

DR

A B

DR

xx1200000725

Zigzag and V-shaped weavingA

Triangular weavingB

Continues on next page
106 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.4 capweavedata - Weavedata for CAP
Continuous Application Platform
Continued

dir
Data type: num
The weave direction angle horizontal to the seam. An angle of zero degrees results
in a weave vertical to the seam.

YW

XW

YW

XW

YW

XW

xx1200000726

tilt
Data type: num
The weave tilt angle, vertical to the seam. An angle of zero degrees results in a
weave which is vertical to the seam.

YW

XW

YW

XW

YW

XW

xx1200000727

rot
Data type: num
The weave orientation angle, horizontal-vertical to the seam. An angle of zero
degrees results in symmetrical weaving.

ZW

YW

ZW

YW

ZW

YW

xx1200000728

bias
Data type: num
The bias horizontal to the weaving pattern. The bias can only be specified for
zig-zag weaving and may not be greater than half the width of the weave. Not
available for circular weaving.
The following figure shows zigzag weaving with and without bias (B).

YW

XW

YW

XW

B

xx1200000729

Continues on next page
Application manual - Continuous Application Platform 107
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.4 capweavedata - Weavedata for CAP

Continuous Application Platform
Continued

ptrn_sync_on
Data type: bool

DescriptionValue

Send synchronization pulses at the right and left turning points of
the weave pattern

TRUE

Do NOT send synchronization pulses at the right and left turning
points of the weave pattern

FALSE

Limitations
The maximum weaving frequency is 2 Hz.
The inclination of the weaving pattern must not exceed the ratio 1:10 (84 degrees).
See the following figure.

dy

dx

dy/dx<10

xx1200000730

Change of weave_type in weavedata is not possible in zone points, only in fine
points.

Syntax
< data object of capweavedata >

< active of bool>

< width of num >

< shape of num >

< type of num >

< length of num >

< cycle_time of num >

< height of num >

< dwell_left of num >

< dwell_center of num >

< dwell_right of num >

< dir of num >

< tilt of num >

< rot of num >

< bias of num >

< ptrn_sync_on of bool >

Related information

Described in:

capdata - CAP data on page 99capdata data type

108 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.4 capweavedata - Weavedata for CAP
Continuous Application Platform
Continued

4.3.5 flypointdata - Data for flying start/end

Usage
flypointdata is used to define all data of flying start or flying end for a CAP
process - it is part of capdata for both flying start and flying end.

Definitions
flypointdata defines data for both flying start and flying end:

• This functionality is only available for CAP.
• Flying start is triggered by the combination of first instruction = TRUE and

zone point.
• Flying end is triggered by the combination of last_instr = TRUE and zone

point.
• Weavestart will be ignored.
• If the starting point is a fine point, no flying start will be performed.
• If the end point is a fine point, no flying end will be performed.
• Motion delay will be ignored.
• Restart after an error will work in the same way as usual: there are no specific

features for flying start, scrape start is available, if the application process
was active, when the error occurred.

• If weaving is activated, the transition in the zone is made by ramping in the
weaving pattern starting at the entrance to the zone until the full pattern is
reached when the TCP leaves the zone.

• Supervision is active during START phase (with moving TCP), MAIN phase
and END_MAIN phase (with moving TCP).

• Backing on the path will be limited to backing to position 4 (see the following
figure).

• The user has to adapt distance and the approach and leaving angle to the
application process: for example, for arc welding at the point where the arc
shall be established (point 4 in the figure) has to be selected in such a way,
that it is possible to ignite.

• The distance between position 4 and 6 must not be = 0.
• The START process_dist must be equal to or shorter than START

distance.
• If program execution is stopped and the application process is active (between

positions 3 and 6), CAP will behave as usual, that is, backing on path (only
if pos. 4 had been passed), weave start, motion delay and movement start
timeout are available.

• If program execution is stopped between positions 1 and 3 or between
positions 7 and 10, the CapX instruction will behave like a TrigX instruction.

• The first CAP segment with flying start is recommended to be at least START
distance long.

Continues on next page
Application manual - Continuous Application Platform 109
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.5 flypointdata - Data for flying start/end

Continuous Application Platform

• If the first segment is shorter than START distance, but longer than START
process_dist, the positions 2 and 4 will be moved towards position 1.

• If the first segment is shorter than or equal START process_dist, positions
1 and 2 will coincide and position 4 will be at the end of the segment.

• The last CAP segment with flying end is recommended to be at least END
distance + END process_dist long.

• If the last segment is shorter than END distance + END process_dist,
but longer than END process_dist, the positions 7 and 9 will be moved
towards position 10.

• If the last segment is shorter than or equal END process_dist, positions
8 and 10 will coincide and position 6 will be at the start of the segment.

• The START phase timeout specified in capdata will only be used at restart
of the application process.

• If a process error occurs after the prefetch request from motion has arrived
at the last CAP instruction (after position 9), that is, PGM is released from
the CAP instruction and may continue with the next instruction, an error log
message is sent, the process is stopped, but the robot movement continues.

xx2300000233

Components

process_dist
Data type: num
The distance (in mm) within which the process is started (for flying start) or ended
(for flying end).

distance
Data type: num

Continues on next page
110 Application manual - Continuous Application Platform

3HAC083246-001 Revision: C
© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.5 flypointdata - Data for flying start/end
Continuous Application Platform
Continued

Sets the start/end of the supervision of the CAP process as a distance (in mm)
from the start/end point.

Structure
< databases of flypointdata >

< process_dist of num >

< distance of num >

Related information

Described in:

capdata - CAP data on page 99capdata data type

Application manual - Continuous Application Platform 111
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.5 flypointdata - Data for flying start/end

Continuous Application Platform
Continued

4.3.6 processtimes - process times

Usage
processtimes is used to define the duration times for all status supervision
phases in CAP, except phase MAIN, which is defined by the robot movement (see
section Supervision in Application manual - Continuous Application Platform).
processtimes is a component of capdata and defines the timeout times for the
following status supervision phases in CAP:

• PRE
• POST1
• POST2

The specified timeout time has to be larger than zero, if supervision should be
used during the corresponding status supervision phase in CAP (see section
Supervision and process phases in Application manual - Continuous Application
Platform).

Components

pre
Data type: num
Defines the duration of the phase PRE in seconds. During that time all conditions
defined for that phase have to be fulfilled.

post1
Data type: num
Defines the duration of the phase POST1 in seconds. During that time all conditions
defined for that phase have to be fulfilled.

post2
Data type: num
Defines the duration of the phase POST2 in seconds. During that time all conditions
defined for that phase have to be fulfilled.

Syntax
< data object of processtimes >

< pre of num >

< post1 of num >

< post2 of num >

Related information

Described in:

capdata - CAP data on page 99capdata data type

112 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.6 processtimes - process times
Continuous Application Platform

4.3.7 restartblkdata - blockdata for restart

Usage
restartblkdata is used to define the behavior of a CAP process at restart.
restartblkdata is a component of capdata and defines the following for a CAP
process at restart, if:

• The robot should execute/block weaving stationary during process restart
(weave_start).

• Robot movement restart should be delayed or not relative process restart
(motion_delay).

• The phases PRE, PRE_START and END_PRE should be executed/blocked
(pre_phase).

• A velocity different from main velocity should be used or not during start of
the process (startspeed_phase).

• The phases START_POST1, POST1 and END_POST1should be
executed/blocked (post1_phase).

• The phases START_POST2, POST2 and END_POST2should be
executed/blocked (post2_phase).

Components

weave_start
Data type: bool

DescriptionValue

Stationary weaving at restart until the process has startedFALSE

No stationary weaving at restart until the process has startedTRUE

motion_delay
Data type: bool

DescriptionValue

Delay of robot movement at restart after the process has startedFALSE

No delay of robot movement at restart after the process has startedTRUE

pre_phase
Data type: bool

DescriptionValue

Execute the phases START_PRE, PRE and END_PRE phase at re-
start

FALSE

DoNOTexecute the phases START_PRE, PRE andEND_PREphase
at restart

TRUE

Continues on next page
Application manual - Continuous Application Platform 113
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.7 restartblkdata - blockdata for restart

Continuous Application Platform

startspeed_phase
Data type: bool

DescriptionValue

Move the robot with start speed in the beginning of a restartFALSE

DoNOTmove the robot with start speed in the beginning of a restart,
use main speed directly

TRUE

post1_phase
Data type: bool

DescriptionValue

Execute the phases START_POST1, POST1 and END_POST1 at
restart

FALSE

Do NOT execute the phases START_POST1, POST1 and
END_POST1 at restart

TRUE

post2_phase
Data type: bool

DescriptionValue

Execute the phases START_POST2, POST2 and END_POST2 at
restart

FALSE

Do NOT execute the phases START_POST2, POST2 and
END_POST2 at restart

TRUE

Syntax
< data object of restartblkdata >

< weave_start of bool >

< motion_delay of bool >

< pre_phase of bool >

< startspeed_phase of bool >

< post1_phase of bool >

< post2_phase of bool >

Related information

Described in:

capdata - CAP data on page 99capdata data type

114 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.7 restartblkdata - blockdata for restart
Continuous Application Platform
Continued

4.3.8 supervtimeouts - Handshake supervision time outs

Usage
supervtimeouts is used to define timeout times for handshake supervision in
CAP.
supervtimeouts is a component of capdata and defines the timeout times for
the following handshake supervision phases in CAP:

• START_PRE
• END_PRE and START_MAIN
• END MAIN and START_POST1
• END_POST1 and START_POST2
• END_POST2

If the parameter is set to 0, there is no timeout.

Components

pre_cond
Data type: num
Timeout time (in seconds) for the START_PRE phase conditions to be fulfilled.

start_cond
Data type: num
Timeout time (in seconds) for the END_PRE and START_MAIN phase conditions
to be fulfilled.

end_main_cond
Data type: num
Timeout time (in seconds) for the END_MAIN and START_POST1 phase conditions
to be fulfilled.

end_post1_cond
Data type: num
Timeout time (in seconds) for the END_POST1 andSTART_POST2 phase conditions
to be fulfilled.

end_post2_cond
Data type: num
Timeout time (in seconds) for the END_POST2 phase conditions to be fulfilled.

Syntax
< data object of supervtimeouts >

< pre_cond of num >

< start_cond of num >

< end_main_cond of num >

< end_post1_cond of num >

< end_post2_cond of num >

Continues on next page
Application manual - Continuous Application Platform 115
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.8 supervtimeouts - Handshake supervision time outs

Continuous Application Platform

Related information

Described in:

capdata - CAP data on page 99capdata data type

116 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.8 supervtimeouts - Handshake supervision time outs
Continuous Application Platform
Continued

4.3.9 weavestartdata - weave start data

Usage
weavestartdata is used to control stationary weaving during start and restart of
a process in CAP.
weavestartdata is a component of capdata and defines the properties of
stationary weaving at start or restart of a CAP process:

• if there shall be stationary weaving at start (active)
• width of stationary weaving (width)
• direction relative path direction (dir)
• frequency of stationary weaving (cycle_time)

Stationary weaving uses always geometric weaving with zig-zag pattern, see
capweavedata - Weavedata for CAP on page 103.

Components

active
Data type: bool

DescriptionValue

Perform stationary weaving at start of a CAP processTRUE

Do NOT perform stationary weaving at start of a CAP processFALSE

width
Data type: num
Defines the amplitude of stationary weaving (mm).

dir
Data type: num
Defines the direction of stationary weaving relative to the path direction (degrees).
Zero degrees means weaving perpendicular to both the path and the z-coordinate
of the tool.

cycle_time
Data type: num
Defines the total time (in seconds) for a complete cycle of stationary weaving, that
is, it defines the weaving frequency. The stationary weaving will last until the
process has started, that is, the supervision criteria of the START_MAIN phase
are fulfilled.

Syntax
< data object of weavestartdata >

< active of bool >

< width of num >

< dir of num >

< cycle_time of num >

Continues on next page
Application manual - Continuous Application Platform 117
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.9 weavestartdata - weave start data

Continuous Application Platform

Related information

Described in:

capdata - CAP data on page 99capdata data type

118 Application manual - Continuous Application Platform
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

4 RAPID references
4.3.9 weavestartdata - weave start data
Continuous Application Platform
Continued

Index
C
capaptrreferencedata, 97
CapAPTrSetupAI, 41
CapAPTrSetupAO, 44
CapAPTrSetupPERS, 47
CapC, 50
capdata, 99
CapEquiDist, 61
CapGetFailSigs, 95
CapInitSupervision, 63
CapL, 64
CapNoProcess, 74
CapRefresh, 76
CapRemoveSupervision, 78
CapSetDOAtStop, 80
CapSetupSupervision, 82
capspeeddata, 102
capweavedata, 103
CapWeaveSync, 85
corner zones

program execution, 22
recommendations, 21

coupling between phases and events, 24

E
errors

limitations, 35
recoverable, 27

event routines
system, 34

events
predefined, 23

F
flypointdata, 109

I
ICap, 88
ICapPathPos, 93

P
predefined events, 23
processtimes, 112

R
restartblkdata, 113

S
supervtimeouts, 115
system event routines, 34

U
units, 32

W
weavestartdata, 117

Application manual - Continuous Application Platform 119
3HAC083246-001 Revision: C

© Copyright 2022-2024 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
83
24
6-
0
0
1,
R
ev

C
,e
n

© Copyright 2022-2024 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	1 Continuous Application Platform
	Introduction
	Limitations

	2 Functionality of CAP
	Description of CAP
	2.1 Robot movement
	Instructions and TCP movement
	Process phases

	2.2 Supervision
	Introduction to supervision
	Supervision phases
	Handshake supervision
	Status supervision

	2.3 Supervision and process phases
	Phases
	PRE phase
	Summary

	MAIN phase
	Summary

	POST1 phase
	Summary

	POST2 phase
	Summary

	2.4 Motion delay
	Description

	2.5 Programming recommendations
	Corner zones

	2.6 Program execution
	Corner zones

	2.7 Predefined events
	Description

	2.8 Coupling between phases and events
	Phases and events
	User events

	2.9 Error handling
	Description
	2.9.1 Recoverable errors
	Introduction
	Errors from CapL and CapC
	No error handler
	Start phase supervision errors
	Examples
	Example 1
	Example 2

	2.10 Restart
	Description
	Units
	Tuning
	Example

	2.11 System event routines
	Introduction
	Exceptions

	2.12 Limitations
	Limitations

	3 Programming examples
	3.1 Laser cutting example
	Requirements
	CAP setup to meet the requirements

	3.2 Step by step
	Set up CAP events
	Set up supervision
	The main program

	4 RAPID references
	4.1 Instructions
	4.1.1 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals
	Usage
	Basic examples
	Example 1

	Arguments
	ai_y
	ai_z
	ReferenceData
	MaxIncCorr
	WarnMaxCorr
	Filter
	SampleTime
	LogFile
	LogSize
	LatestCorr
	AccCorr

	Syntax
	Related information

	4.1.2 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals
	Usage
	Basic examples
	Example 1

	Arguments
	ao_y
	ao_z
	ReferenceData
	MaxIncCorr
	WarnMaxCorr
	Filter
	SampleTime
	LogFile
	LogSize
	LatestCorr
	AccCorr

	Syntax
	Related information

	4.1.3 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables
	Usage
	Basic examples
	Example 1

	Arguments
	var_y
	var_z
	ReferenceData
	[\ResetToReference]
	MaxIncCorr
	WarnMaxCorr
	Filter
	SampleTime
	LogFile
	LogSize
	LatestCorr
	AccCorr

	Syntax
	Related information

	4.1.4 CapC - Circular CAP movement instruction
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	CirPoint
	ToPoint
	[\ID]
	Speed
	Cdata
	[\Movestart_timer]
	Weavestart
	Weave
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\Corr]
	[\Time]
	[\T1]
	TriggArray
	[\T2]
	[\T3]
	[\T4]
	[\T5]
	[\T6]
	[\T8]
	[\T8]
	[\TLoad]

	Program execution
	Error handling
	Supervision errors
	Sensor related errors
	Errors possible in MultiMove systems
	Errors inherited from TriggX
	Other CAP errors

	CAP process
	Trigger conditions [\T1] to [\T8] and [\TriggArray]
	Limitations
	Syntax
	Related information

	4.1.5 CapEquiDist - Generate equidistant event
	Usage
	Basic example
	Arguments
	[\Distance]
	[\Reset]

	Limitations
	Syntax

	4.1.6 CapInitSupervision - Reset all supervision for CAP
	Usage
	Example
	Limitations
	Syntax
	Related information

	4.1.7 CapL - Linear CAP movement instruction
	Usage
	Basic examples
	Example1
	Example 2

	Arguments
	ToPoint
	[\ID]
	Speed
	Cdata
	[\Movestart_timer]
	Weavestart
	Weave
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\Corr]
	[\Time]
	[\T1]
	TriggArray
	[\T2]
	[\T3]
	[\T4]
	[\T5]
	[\T6]
	[\T8]
	[\T8]
	[\TLoad]

	Program execution
	Error handling
	Supervision errors
	Sensor related errors
	Errors possible in MultiMove systems
	Errors inherited from TriggX
	Other CAP errors

	CAP process
	Trigger conditions [\T1] to [\T8] and [\TriggArray]
	Limitations
	Syntax
	Related information

	4.1.8 CapNoProcess - Run CAP without process
	Usage
	Basic example
	Arguments
	skip_distance

	Limitations
	Syntax
	Related information

	4.1.9 CapRefresh - Refresh CAP data
	Usage
	Basic example
	Arguments
	[\MainSpeed]
	[\MainWeave]
	[\StartWeave]
	[\RestartDist]

	Syntax

	4.1.10 CapRemoveSupervision - Remove condition for one signal
	Usage
	Basic example
	Arguments
	Signal
	Condition
	Listtype
	[\Deactivate]

	Syntax
	Related information

	4.1.11 CapSetDOAtStop - Set a digital output signal at TCP stop
	Usage
	Basic example
	Arguments
	Signal
	Value

	Limitations
	Syntax
	Related information

	4.1.12 CapSetupSupervision - Setup conditions for signal supervision in CAP
	Usage
	Basic example
	Arguments
	Signal
	Condition
	Listtype
	[\ErrIndSig]

	Program execution
	Errors
	CAP_SPV_LIM
	CAP_SPV_UNK_LST

	Limitations
	Syntax
	Related information

	4.1.13 CapWeaveSync - set up signals and levels for weave synchronization
	Usage
	Basic example
	Arguments
	[\Reset]
	[\DoLeft]
	[\LevelLeft]
	[\LevelLeft]
	[\DoRight]
	[\LevelRight]

	Program execution
	Limitations
	Syntax
	Related information

	4.1.14 ICap - connect CAP events to trap routines
	Usage
	Basic example
	Arguments
	Interrupt
	Event

	Available CAP events
	Limitations
	Syntax
	Related information

	4.1.15 ICapPathPos - Get center line robtarget when weaving
	Usage
	Basic example
	Arguments
	p_robt
	sen_pos
	intpt
	[\NoDispl]
	[\EOffs]

	Limitations
	Syntax
	Related information

	4.2 Functions
	4.2.1 CapGetFailSigs - Get failed I/O signals
	Usage
	Basic example
	Return value
	Arguments
	ErrorNames

	Limitations
	Syntax
	Related information

	4.3 Data types
	4.3.1 capaptrreferencedata - Variable setup data for At-Point-Tracker
	Usage
	Components
	reference_y
	reference_z
	threshold_y
	threshold_z
	gain_y
	gain_z

	Structure
	Related information

	4.3.2 capdata - CAP data
	Usage
	Components
	start_fly
	first_instr
	last_instr
	restart_dist
	speed_data
	start_fly_point
	end_fly_point
	sup_timeouts
	proc_times
	block_at_restart

	Structure
	Related information

	4.3.3 capspeeddata - Speed data for CAP
	Usage
	Components
	start
	startspeed_time
	startmove_delay
	main

	Structure
	Related information

	4.3.4 capweavedata - Weavedata for CAP
	Usage
	Description of weaving
	Components
	active
	width
	shape
	type
	length
	cycle_time
	height
	dwell_left
	dwell_center
	dwell_right
	dir
	tilt
	rot
	bias
	ptrn_sync_on

	Limitations
	Syntax
	Related information

	4.3.5 flypointdata - Data for flying start/end
	Usage
	Definitions
	Components
	process_dist
	distance

	Structure
	Related information

	4.3.6 processtimes - process times
	Usage
	Components
	pre
	post1
	post2

	Syntax
	Related information

	4.3.7 restartblkdata - blockdata for restart
	Usage
	Components
	weave_start
	motion_delay
	pre_phase
	startspeed_phase
	post1_phase
	post2_phase

	Syntax
	Related information

	4.3.8 supervtimeouts - Handshake supervision time outs
	Usage
	Components
	pre_cond
	start_cond
	end_main_cond
	end_post1_cond
	end_post2_cond

	Syntax
	Related information

	4.3.9 weavestartdata - weave start data
	Usage
	Components
	active
	width
	dir
	cycle_time

	Syntax
	Related information

	Index

