
ROBOTICS

Application manual
Controller software OmniCore

Trace back information:
Workspace 24A version a9
Checked in 2024-03-01
Skribenta version 5.5.019

Application manual
Controller software OmniCore

RobotWare 7.14

Document ID: 3HAC066554-001
Revision: N

© Copyright 2019-2024 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2019-2024 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
11Overview of this manual ...
14Open source and 3rd party components ...

151 Introduction to RobotWare

172 RobotWare-OS
172.1 Advanced RAPID ..
172.1.1 Introduction to Advanced RAPID ..
182.1.2 Bit functionality ...
182.1.2.1 Overview ...
192.1.2.2 RAPID components ..
202.1.2.3 Bit functionality example ...
212.1.3 Data search functionality ..
212.1.3.1 Overview ...
222.1.3.2 RAPID components ..
232.1.3.3 Data search functionality examples ...
242.1.4 Alias I/O signals ..
242.1.4.1 Overview ...
252.1.4.2 RAPID components ..
262.1.4.3 Alias I/O functionality example ...
272.1.5 Configuration functionality ..
272.1.5.1 Overview ...
282.1.5.2 RAPID components ..
292.1.5.3 Configuration functionality example ..
302.1.6 Power failure functionality ...
302.1.6.1 Overview ...
312.1.6.2 RAPID components and system parameters
322.1.6.3 Power failure functionality example ...
332.1.7 Process support functionality ..
332.1.7.1 Overview ...
342.1.7.2 RAPID components ..
352.1.7.3 Process support functionality examples ...
372.1.8 Interrupt functionality ...
372.1.8.1 Overview ...
382.1.8.2 RAPID components ..
392.1.8.3 Interrupt functionality examples ...
402.1.9 User message functionality ...
402.1.9.1 Overview ...
412.1.9.2 RAPID components ..
422.1.9.3 User message functionality examples ..
442.1.9.4 Text table files ..
452.1.10 RAPID support functionality ..
452.1.10.1 Overview ...
462.1.10.2 RAPID components ..
472.1.10.3 RAPID support functionality examples ...
482.2 Analog Signal Interrupt ...
482.2.1 Introduction to Analog Signal Interrupt ..
492.2.2 RAPID components ...
502.2.3 Code example ..
512.3 Connected Services ..
512.3.1 Overview ...
532.3.2 Connected Services connectivity ..
542.3.3 Connected Services registration ..
562.3.4 Summary of Connected Services paths in FlexPendant
572.3.5 Summary of Connected Services paths in RobotStudio
582.3.6 Configuration - system parameters ...

Application manual - Controller software OmniCore 5
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Table of contents

602.3.7 Configuring Connected Services using FlexPendant
602.3.7.1 Introduction ..
612.3.7.2 Enable or disable Connected Services using FlexPendant

62
2.3.7.3 Configure Connected Services based on connection type using

FlexPendant ...
652.3.7.4 Configuration of public network using FlexPendant
662.3.7.5 Configure internet connection with proxy using FlexPendant
672.3.8 Configuring Connected Services using RobotStudio
672.3.8.1 Introduction ..
682.3.8.2 Enable or disable connected services using RobotStudio

69
2.3.8.3 Configure connected services based on connection type using

RobotStudio ...
722.3.8.4 Configuration of public network using RobotStudio
732.3.8.5 Configure internet connection with proxy using RobotStudio
742.3.9 Connected Services information ..
842.3.10 Troubleshooting ..
842.3.10.1 Server connectivity troubleshooting ..
852.3.10.2 3G / Wi-Fi Connectivity troubleshooting ...
862.3.10.3 4G Connectivity troubleshooting ...
872.3.10.4 How to get Connected Services Embedded logs from the controller
882.3.10.5 Connected Services Embedded troubleshooting logs
902.3.11 Network topology scenarios ..

1012.4 Cyclic bool ...
1012.4.1 Cyclically evaluated logical conditions ..
1042.4.2 Cyclic bool examples ...
1072.4.3 System parameters ...
1082.4.4 RAPID components ...
1092.5 Device Command Interface ...
1092.5.1 Introduction to Device Command Interface ...
1102.5.2 RAPID components and system parameters ...
1112.5.3 Code example ..
1132.6 Electronically Linked Motors ..
1132.6.1 Overview ...
1152.6.2 Configuration ...
1152.6.2.1 System parameters ..
1172.6.2.2 Configuration example ..
1182.6.3 Managing a follower axis ..
1182.6.3.1 Using the service routine for a follower axis
1202.6.3.2 Calibrate follower axis position ...
1222.6.3.3 Reset follower axis ..
1232.6.4 Tuning a torque follower ...
1232.6.4.1 Description of torque follower ..
1252.6.4.2 Using the service routine to tune a torque follower
1272.6.5 Data setup ...
1272.6.5.1 Set up data for the service routine ..
1292.6.5.2 Example of data setup ..
1312.7 File and I/O device handling ..
1312.7.1 Introduction to file and I/O device handling ...
1322.7.2 Binary and character based communication ...
1322.7.2.1 Overview ...
1332.7.2.2 RAPID components ..
1342.7.2.3 Code examples ...
1362.7.3 Raw data communication ..
1362.7.3.1 Overview ...
1372.7.3.2 RAPID components ..
1382.7.3.3 Code examples ...
1402.7.4 File and directory management ..
1402.7.4.1 Overview ...
1412.7.4.2 RAPID components ..

6 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Table of contents

1422.7.4.3 Code examples ...
1442.8 Fixed Position Events ..
1442.8.1 Overview ...
1452.8.2 RAPID components and system parameters ...
1482.8.3 Code examples ...
1502.9 Logical Cross Connections ...
1502.9.1 Introduction to Logical Cross Connections ...
1512.9.2 Configuring Logical Cross Connections ...
1522.9.3 Examples ..
1542.9.4 Limitations ...
1552.10 RAPID Message Queue ..
1552.10.1 Introduction to RAPID Message Queue ...
1562.10.2 RAPID Message Queue behavior ...
1602.10.3 System parameters ...
1612.10.4 RAPID components ...
1622.10.5 Code examples ...
1662.11 Socket Messaging ...
1662.11.1 Introduction to Socket Messaging ..
1672.11.2 Schematic picture of socket communication ...
1682.11.3 Technical facts about Socket Messaging ...
1692.11.4 RAPID components ...
1712.11.5 Code examples for Socket Messaging ...
1732.12 User logs ...
1732.12.1 Introduction to User logs ..

1753 Motion Performance
1753.1 Absolute Accuracy [3101-x] ...
1753.1.1 About Absolute Accuracy ...
1773.1.2 Useful tools ..
1783.1.3 Configuration ...
1793.1.4 Maintenance ..
1793.1.4.1 Maintenance that affect the accuracy ..
1813.1.4.2 Loss of accuracy ...
1823.1.5 Compensation theory ...
1823.1.5.1 Error sources ..
1833.1.5.2 Absolute Accuracy compensation ...
1853.1.6 Preparation of Absolute Accuracy robot ..
1853.1.6.1 ABB calibration process ..
1873.1.6.2 Birth certificate ..
1883.1.6.3 Compensation parameters ..
1893.1.7 Cell alignment ..
1893.1.7.1 Overview ...
1903.1.7.2 Measure fixture alignment ...
1913.1.7.3 Measure robot alignment ..
1923.1.7.4 Frame relationships ...
1933.1.7.5 Tool calibration ...
1943.2 Advanced Robot Motion 3100-1 ...
1953.3 Advanced Shape Tuning [included in 3100-1] ...
1953.3.1 About Advanced Shape Tuning ..
1963.3.2 Automatic friction tuning ...
1983.3.3 Manual friction tuning ..
2003.3.4 System parameters ...
2003.3.4.1 System parameters ..
2013.3.4.2 Setting tuning system parameters ...
2023.3.5 RAPID components ...
2033.4 Motion Process Mode [included in 3100-1] ...
2033.4.1 About Motion Process Mode ...
2053.4.2 User-defined modes ..
2073.4.3 General information about robot tuning ...

Application manual - Controller software OmniCore 7
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Table of contents

2103.4.4 Additional information ..
2113.5 Wrist Move [included in 3100-1] ...
2113.5.1 Introduction to Wrist Move ..
2133.5.2 Cut plane frame ..
2153.5.3 RAPID components ...
2163.5.4 RAPID code, examples ...
2183.5.5 Troubleshooting ..

2194 Motion Supervision
2194.1 World Zones [3106-1] ...
2194.1.1 Overview of World Zones ..
2214.1.2 RAPID components ...
2234.1.3 Code examples ...
2254.2 Collision Detection [3107-1] ...
2254.2.1 Overview ...
2274.2.2 Limitations ...
2284.2.3 What happens at a collision ...
2304.2.4 Additional information ..
2314.2.5 Configuration and programming facilities ...
2314.2.5.1 System parameters ..
2334.2.5.2 RAPID components ..
2344.2.5.3 Signals ..
2354.2.6 How to use Collision Detection ..
2354.2.6.1 Set up system parameters ...
2364.2.6.2 Adjust supervision from FlexPendant ..
2374.2.6.3 Adjust supervision from RAPID program ..
2384.2.6.4 How to avoid false triggering ...
2394.3 Collision Avoidance [3150-1] ...
2424.4 SafeMove Assistant ...

2455 Motor Control
2455.1 Independent Axis [3111-1] ..
2455.1.1 Overview ...
2475.1.2 System parameters ...
2485.1.3 RAPID components ...
2495.1.4 Code examples ...

2516 RAPID Program Features
2516.1 Path Recovery [3113-1] ..
2516.1.1 Overview ...
2526.1.2 RAPID components ...
2536.1.3 Store current path ...
2556.1.4 Path recorder ...
2596.2 Multitasking [3114-1] ..
2596.2.1 Introduction to Multitasking ...
2616.2.2 System parameters ...
2636.2.3 RAPID components ...
2646.2.4 Communication between tasks ..
2646.2.4.1 Persistent variables ...
2666.2.4.2 Waiting for other tasks ..
2686.2.4.3 Synchronizing between tasks ...
2706.2.4.4 Using a dispatcher ...
2726.2.5 Other programming issues ..
2726.2.5.1 Share resource between tasks ...
2736.2.5.2 Test if task controls mechanical unit ..
2746.2.5.3 taskid ..
2756.2.5.4 Avoid heavy loops ...

8 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Table of contents

2777 Communication
2777.1 FTP&SFTP client [3116-1] ...
2777.1.1 Introduction to FTP&SFTP client ..
2807.2 NFS Client [3117-1] ...
2807.2.1 Introduction to NFS Client ...

2838 User Interaction Application
2838.1 RobotStudio Connect [3119-1] ...
2848.2 FlexPendant Base Apps ...
2858.3 FlexPendant Independent Apps ...

2879 Engineering tools
2879.1 RobotWare Add-In ...
2889.2 Path Corrections [3123-1] ...
2889.2.1 Overview ...
2909.2.2 RAPID components ...
2919.2.3 Related RAPID functionality ..
2929.2.4 Code example ..
2939.3 Auto Acknowledge Input ...

29510 Tool control options
29510.1 Servo Tool Change [3110-1] ..
29510.1.1 Overview ...
29610.1.2 Requirements and limitations ..
29810.1.3 Configuration ...
29910.1.4 Connection relay ...
30110.1.5 Tool change procedure ..
30210.1.6 Jogging servo tools with activation disabled ...
30310.2 Tool Control [3109-1] ...
30310.2.1 Overview ...
30410.2.2 Servo tool movements ...
30510.2.3 Tip management ...
30710.2.4 Supervision ..
30810.2.5 RAPID components ...
30910.2.6 System parameters ...
31410.2.7 Commissioning and service ..
31610.2.8 Mechanical unit calibrations ..
31710.2.9 RAPID code example ...

319Index

Application manual - Controller software OmniCore 9
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Table of contents

This page is intentionally left blank

Overview of this manual
About this manual

This manual explains the basics of when and how to use various RobotWare options
and functions.

Usage
This manual can be used either as a reference to find out if an option is the right
choice for solving a problem, or as a description of how to use an option. Detailed
information regarding syntax for RAPID routines, and similar, is not described here,
but can be found in the respective reference manual.

Who should read this manual?
This manual is intended for robot programmers.

Prerequisites
The reader should...

• be familiar with industrial robots and their terminology.
• be familiar with the RAPID programming language.
• be familiar with system parameters and how to configure them.

References

Tip

All documents can be found via myABB Business Portal, www.abb.com/myABB.

Document IDReference

3HAC065034-001Product specification - OmniCore C line

3HAC079823-001Product specification - OmniCore E line

3HAC074671-001Product specification - OmniCore V line

3HAC032104-001Operating manual - RobotStudio

3HAC065036-001Operating manual - OmniCore

3HAC065037-001Operating manual - Integrator's guide OmniCore

3HAC065038-001Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC065040-001Technical reference manual - RAPID Overview

3HAC065041-001Technical reference manual - System parameters

3HAC082287-001Application manual - Additional axes

3HAC060860-001Product manual - OmniCore C30

3HAC073706-001Product manual - OmniCore C90XT

3HAC079399-001Product manual - OmniCore E10

3HAC087112-001Product manual - OmniCore V250XT Type B

Continues on next page
Application manual - Controller software OmniCore 11
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Overview of this manual

http://www.abb.com/myABB

Document IDReference

3HAC081697-001Product manual - OmniCore V400XT

Revisions

DescriptionRevision

Released with RobotWare 7.0.A

Released with RobotWare 7.01.B
The following updates are made in this revision:

• "Cyber security" replaced by "Cybersecurity" in entire manual.
• Updated the section Connected Services on page 51.

Released with RobotWare 7.0.2.C
The following updates are made in this revision:

• FlexPendant terminology updated in entire manual.
• Updated the section Summary of Connected Services paths in Flex-

Pendant on page 56.

Released with RobotWare 7.1.D
The following updates are made in this revision:

• Updated the section Connected Services on page 51.
• Added information about YuMi robots and Collision Detection, see

Collision detection for YuMi robots on page 226.
• Updated limitations for SFTP client, see Limitations on page 278.

Released with RobotWare 7.2.E
The following updates are made in this revision:

• Updated the section Connected Services on page 51.
• Information about the digital output MotSupOn updated in section

Signals on page 234.
• SectionSystemparameters on page160 updated with information about

how to adjust the values of the attributes RMQ Max Message Size and
RMQ Max No Of Messages.

• Updated sections due to remote mounted disk/virtual root changes:
Limitations on page278 (FTP&SFTP client) and Limitations on page280
(NFS Client).

Released with RobotWare 7.3.F
The following updates are made in this revision:

• Updated the section Connected Services on page 51.

Released with RobotWare 7.4.G
The following updates are made in this revision:

• Added the section Connected Services Embedded troubleshooting
logs on page 88.

• Updated the section Connected Services on page 51.
• Updated information regarding UTF-8, in Raw data communication on

page 136.

Released with RobotWare 7.5.
• Updated limitation for Collision Avoidance [3150-1] on page 239.

H

Released with RobotWare 7.6.
• Added the section Auto Acknowledge Input on page 293.
• Updated limitation regarding lead-through, see Overview of World

Zones on page 219.
• Added the section SafeMove Assistant on page 242.

J

Continues on next page
12 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

Overview of this manual
Continued

DescriptionRevision

Released with RobotWare 7.10.
• Added the option Servo Tool Change [3110-1] on page 295.
• Minor corrections.
• Removed statement that the instructionsStorePath and RestorePath

are included in RobotWare base. They require option Path Recovery.
• Added information about deactivation/deactivation and trigger signals,

see Collision Avoidance [3150-1] on page 239.
• Minor corrections in Network topology scenarios on page 90.
• Minor corrections in Auto Acknowledge Input on page 293.

K

Released with RobotWare 7.12.
• Updated the section Connected Services information on page 74.
• The function Collision Avoidance is now available for delta robots,

seeLimitations on page 240.

L

Released with RobotWare 7.13.
• ABB Connected Services is the new name for ABB Ability Connected

Services.
• Added section Electronically Linked Motors on page 113.
• Updated the section Connected Services on page 51.

M

Released with RobotWare 7.14.
• Added section Tool Control [3109-1] on page 303.

N

Application manual - Controller software OmniCore 13
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Overview of this manual
Continued

Open source and 3rd party components
Open source and 3rd party components

ABB products use software provided by third parties, including open source
software. The following copyright statements and licenses apply to various
components that are distributed inside the ABB software. Each ABB product does
not necessarily use all of the listed third party software components. Licensee
must fully agree and comply with these license terms or the user is not entitled to
use the product. Start using the ABB software means accepting also referred
license terms. The third party license terms apply only to the respective software
to which the license pertains, and the third party license terms do not apply to ABB
products. With regard to programs provided under the GNU general public license
and the GNU lesser general public license licensor will provide licensee on demand,
a machine-readable copy of the corresponding source code. This offer is valid for
a period of three years after delivery of the product.
ABB software is licensed under the ABB end user license agreement, which is
provided separately.

RobotWare
For RobotWare, there is license information in the folder \licenses in the RobotWare
distribution package.

OpenSSL
This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)
This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

CTM
For OleOS, the Linux based operating system used on the conveyor tracking
module (CTM), a list of copyright statements and licenses is available in the file
/etc/licenses.txt located on the CTM board and accessible via the console port or
by downloading the file over SFTP.
For the CTM application, a list of copyright statements and licenses is available in
the file /opt/ABB.com/ctm/licenses.txt located on the CTM board and accessible
via the console port or by downloading the file over SFTP.

14 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Open source and 3rd party components

1 Introduction to RobotWare
Software products

RobotWare is a family of software products from ABB Robotics. The products are
designed to make you more productive and lower your cost of owning and operating
a robot. ABB Robotics has invested many years into the development of these
products and they represent knowledge and experience based on several thousands
of robot installations.

Product classes
Within the RobotWare family, there are different classes of products:

DescriptionProduct classes

This is the operating system of the robot. RobotWare-OS provides
all the necessary features for fundamental robot programming and
operation. It is an inherent part of the robot, but can be provided
separately for upgrading purposes.

RobotWare-OS

For a description of RobotWare-OS, see the product specification
for the robot controller.

These products are options that run on top of RobotWare-OS. They
are intended for robot users that need additional functionality for
motion control, communication, system engineering, or applications.

Note

Not all RobotWare options are described in this manual. Some op-
tions are more comprehensive and are therefore described in sep-
arate manuals.

RobotWare options

These are extensive packages for specific process application like
spot welding, arc welding, and dispensing. They are primarily de-
signed to improve the process result and to simplify installation and
programming of the application.

Process application
options

The process application options are all described in separate
manuals.

A RobotWare Add-in is a self-contained package that extends the
functionality of the robot system.

RobotWare Add-ins

Some software products from ABB Robotics are delivered as Add-
ins. For example track motion IRBT, positioner IRBP, and stand
alone controller. For more information see the product specification
for the robot controller.
The purpose of RobotWare Add-ins is also that a robot program
developer outside of ABB can create options for the ABB robot
systems, and sell the options to their customers. For more informa-
tion on creating RobotWare Add-ins, contact your local ABB Robotics
representative at www.abb.com/contacts.

Continues on next page
Application manual - Controller software OmniCore 15
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

1 Introduction to RobotWare

http://www.abb.com/contacts

Option groups
For OmniCore, the RobotWare options have been gathered in groups, depending
on the customer benefit. The goal is to make it easier to understand the customer
value of the options. However, all options are purchased individually. The groups
are as follows:

DescriptionOption groups

Options that optimize the performance of your robot.Motion performance

Options that make your robot coordinated with external equipment
or other robots.

Motion coordination

Options that supervises the position of the robot.Motion Events

Options that controls the path of the robot.Motion functions

Options that supervises the movement of the robot.Motion Supervision

Options that make the robot communicate with other equipment.
(External PCs etc.)

Communication

Options for the advanced robot integrator.Engineering tools

Options that make the robot controller operate external motors, in-
dependent of the robot.

Servo motor control

Note

Not all RobotWare options are described in this manual. Some options are more
comprehensive and are therefore described in separate manuals.

16 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

1 Introduction to RobotWare
Continued

2 RobotWare-OS
2.1 Advanced RAPID

2.1.1 Introduction to Advanced RAPID

Introduction to Advanced RAPID
The RobotWare base functionality Advanced RAPID is intended for robot
programmers who develop applications that require advanced functionality.
Advanced RAPID includes many different types of functionality, which can be
divided into these groups:

DescriptionFunctionality group

Bitwise operations on a byte.Bit functionality

Search and get/set data objects (e.g. variables).Data search functionality

Give an I/O signal an optional alias name.Alias I/O functionality

Get/set system parameters.Configuration functionality

Restore signals after power failure.Power failure functionality

Useful when creating process applications.Process support functionality

More interrupt functionality than included in Robot-
Ware base functionality.

Interrupt functionality

Error messages and other texts.User message functionality

Miscellaneous support for the programmer.RAPID support functionality

Application manual - Controller software OmniCore 17
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.1 Introduction to Advanced RAPID

2.1.2 Bit functionality

2.1.2.1 Overview

Purpose
The purpose of the bit functionality is to be able to make operations on a byte,
seen as 8 digital bits. It is possible to get or set a single bit, or make logical
operations on a byte. These operations are useful, for example, when handling a
group of digital I/O signals.

What is included
Bit functionality includes:

• The data type byte.
• Instructions used set a bit value: BitSet and BitClear.
• Function used to get a bit value: BitCheck.
• Functions used to make logical operations on a byte: BitAnd, BitOr,

BitXOr, BitNeg, BitLSh, and BitRSh.

18 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.2.1 Overview

2.1.2.2 RAPID components

Data types
This is a brief description of each data type used for the bit functionality. For more
information, see the respective data type in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionData type

The data type byte represent a decimal value between 0 and 255.byte

Instructions
This is a brief description of each instruction used for the bit functionality. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

BitSet is used to set a specified bit to 1 in a defined byte data.BitSet

BitClear is used to clear (set to 0) a specified bit in a defined byte data.BitClear

Functions
This is a brief description of each function used for the bit functionality. For more
information, see the respective function in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

BitAnd is used to execute a logical bitwise AND operation on data types
byte.

BitAnd

BitOr is used to execute a logical bitwise OR operation on data types byte.BitOr

BitXOr (Bit eXclusive Or) is used to execute a logical bitwise XOR operation
on data types byte.

BitXOr

BitNeg is used to execute a logical bitwise negation operation (one’s
complement) on data types byte.

BitNeg

BitLSh (Bit Left Shift) is used to execute a logical bitwise left shift operation
on data types byte.

BitLSh

BitRSh (Bit Right Shift) is used to execute a logical bitwise right shift oper-
ation on data types byte.

BitRSh

BitCheck is used to check if a specified bit in a defined byte data is set to
1.

BitCheck

Tip

Even though not part of the option, the functions for conversion between a byte
and a string, StrToByte and ByteToStr, are often used together with the bit
functionality.

Application manual - Controller software OmniCore 19
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.2.2 RAPID components

2.1.2.3 Bit functionality example

Program code
CONST num parity_bit := 8;

!Set data1 to 00100110

VAR byte data1 := 38;

!Set data2 to 00100010

VAR byte data2 := 34;

VAR byte data3;

!Set data3 to 00100010

data3 := BitAnd(data1, data2);

!Set data3 to 00100110

data3 := BitOr(data1, data2);

!Set data3 to 00000100

data3 := BitXOr(data1, data2);

!Set data3 to 11011001

data3 := BitNeg(data1);

!Set data3 to 10011000

data3 := BitLSh(data1, 2);

!Set data3 to 00010011

data3 := BitRSh(data1, 1);

!Set data1 to 10100110

BitSet data1, parity_bit;

!Set data1 to 00100110

BitClear data1, parity_bit;

!If parity_bit is 0, set it to 1

IF BitCheck(data1, parity_bit) = FALSE THEN

BitSet data1, parity_bit;

ENDIF

20 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.2.3 Bit functionality example

2.1.3 Data search functionality

2.1.3.1 Overview

Purpose
The purpose of the data search functionality is to search and get/set values for
data objects of a certain type.
Here are some examples of applications for the data search functionality:

• Setting a value to a variable, when the variable name is only available in a
string.

• List all variables of a certain type.
• Set a new value for a set of similar variables with similar names.

What is included
Data search functionality includes:

• The data type datapos.
• Instructions used to find a set of data objects and get or set their

values:SetDataSearch, GetDataVal, SetDataVal, and SetAllDataVal.
• A function for traversing the search result: GetNextSym.

Application manual - Controller software OmniCore 21
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.3.1 Overview

2.1.3.2 RAPID components

Data types
This is a brief description of each data type used for the data search functionality.
For more information, see the respective data type in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

datapos is the enclosing block to a data object (internal system data)
retrieved with the function GetNextSym.

datapos

Instructions
This is a brief description of each instruction used for the data search functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

SetDataSearch is used together with GetNextSym to retrieve data ob-
jects from the system.

SetDataSearch

GetDataVal makes it possible to get a value from a data object that is
specified with a string variable, or from a data object retrieved with
GetNextSym.

GetDataVal

SetDataVal makes it possible to set a value for a data object that is
specified with a string variable, or from a data object retrieved with
GetNextSym.

SetDataVal

SetAllDataVal make it possible to set a new value to all data objects
of a certain type that match the given grammar.

SetAllDataVal

Functions
This is a brief description of each function used for the data search functionality.
For more information, see the respective function in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

GetNextSym (Get Next Symbol) is used together with SetDataSearch to
retrieve data objects from the system.

GetNextSym

22 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.3.2 RAPID components

2.1.3.3 Data search functionality examples

Set unknown variable
This is an example of how to set the value of a variable when the name of the
variable is unknown when programming, and only provided in a string.

VAR string my_string;

VAR num my_number;

VAR num new_value:=10;

my_string := "my_number";

!Set value to 10 for variable specified by my_string

SetDataVal my_string,new_value;

Reset a range of variables
This is an example where all numeric variables starting with "my" is reset to 0.

VAR string my_string:="my.*";

VAR num zerovar:=0;

SetAllDataVal "num"\Object:=my_string,zerovar;

List/set certain variables
In this example, all numeric variables in the module "mymod" starting with "my"
are listed on the FlexPendant and then reset to 0.

VAR datapos block;

VAR string name;

VAR num valuevar;

VAR num zerovar:=0;

!Search for all num variables starting with "my" in the module
"mymod"

SetDataSearch "num"\Object:="my.*"\InMod:="mymod";

!Loop through the search result

WHILE GetNextSym(name,block) DO

!Read the value from each found variable

GetDataVal name\Block:=block,valuevar;

!Write name and value for each found variable

TPWrite name+" = "\Num:=valuevar;

!Set the value to 0 for each found variables

SetDataVal name\Block:=block,zerovar;

ENDWHILE

Application manual - Controller software OmniCore 23
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.3.3 Data search functionality examples

2.1.4 Alias I/O signals

2.1.4.1 Overview

Purpose
The Alias I/O functionality gives the programmer the ability to use any name on a
signal and connect that name to a configured I/O signal.
This is useful when a RAPID program is reused between different systems. Instead
of rewriting the code, using a signal name that exist on the new system, the signal
name used in the program can be defined as an alias name.

What is included
Alias I/O functionality consists of the instruction AliasIO.

24 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.4.1 Overview

2.1.4.2 RAPID components

Data types
There are no RAPID data types for the Alias I/O functionality.

Instructions
This is a brief description of each instruction used for the Alias I/O functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

AliasIO is used to define a signal of any type with an alias name, or to
use signals in built-in task modules. The alias name is connected to a
configured I/O signal.

AliasIO

The instruction AliasIO must be run before any use of the actual signal.

Functions
There are no RAPID functions for the Alias I/O functionality.

Application manual - Controller software OmniCore 25
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.4.2 RAPID components

2.1.4.3 Alias I/O functionality example

Assign alias name to signal
This example shows how to define the digital output signal alias_do to be
connected to the configured digital output I/O signal config_do.
The routine prog_start is connected to the START event.
This will ensure that "alias_do" can be used in the RAPID code even though there
is no configured signal with that name.

VAR signaldo alias_do;

PROC prog_start()

AliasIO config_do, alias_do;

ENDPROC

26 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.4.3 Alias I/O functionality example

2.1.5 Configuration functionality

2.1.5.1 Overview

Purpose
The configuration functionality gives the programmer access to the system
parameters at run time. The parameter values can be read and edited. The controller
can be restarted in order for the new parameter values to take effect.

What is included
Configuration functionality includes the instructions:ReadCfgData, WriteCfgData,
and WarmStart.

Application manual - Controller software OmniCore 27
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.5.1 Overview

2.1.5.2 RAPID components

Data types
There are no RAPID data types for the configuration functionality.

Instructions
This is a brief description of each instruction used for the configuration functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

ReadCfgData is used to read one attribute of a named system parameter
(configuration data).

ReadCfgData

WriteCfgData is used to write one attribute of a named system para-
meter (configuration data).

WriteCfgData

WarmStart is used to restart the controller at run time.WarmStart

This is useful after changing system parameters with the instruction
WriteCfgData.

Functions
There are no RAPID functions for the configuration functionality.

28 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.5.2 RAPID components

2.1.5.3 Configuration functionality example

Configure system parameters
This is an example where the system parameter cal_offset for rob1_1 is read,
increased by 0.2 mm and then written back. To make this change take effect, the
controller is restarted.

VAR num old_offset;

VAR num new_offset;

ReadCfgData "/MOC/MOTOR_CALIB/rob1_1", "cal_offset",old_offset;

new_offset := old_offset + (0.2/1000);

WriteCfgData "/MOC/MOTOR_CALIB/rob1_1", "cal_offset",new_offset;

WarmStart;

Application manual - Controller software OmniCore 29
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.5.3 Configuration functionality example

2.1.6 Power failure functionality

2.1.6.1 Overview

Purpose
If the robot was in the middle of a path movement when the power fail occurred,
some extra actions may need to be taken when the robot motion is resumed. The
power failure functionality helps you detect if the power fail occurred during a path
movement.

Note

For more information see the type Signal Safe Level, which belongs to the topic
I/O System, in Technical reference manual - System parameters.

What is included
The power failure functionality includes a function that checks for interrupted path:
PFRestart

30 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.6.1 Overview

2.1.6.2 RAPID components and system parameters

Data types
There are no RAPID data types in the power failure functionality.

Instructions
There are no RAPID instructions in the power failure functionality.

Functions
This is a brief description of each function in the power failure functionality. For
more information, see the respective function in Technical referencemanual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

PFRestart (Power Failure Restart) is used to check if the path was inter-
rupted at power failure. If so it might be necessary to make some specific
actions. The function checks the path on current level, base level or on in-
terrupt level.

PFRestart

System parameters
There are no system parameters in the power failure functionality. However,
regardless of whether you have any options installed, you can use the parameter
Store signal at power fail.
For more information, see Technical reference manual - System parameters.

Application manual - Controller software OmniCore 31
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.6.2 RAPID components and system parameters

2.1.6.3 Power failure functionality example

Test for interrupted path
When resuming work after a power failure, this example tests if the power failure
occurred during a path (i.e. when the robot was moving).

!Test if path was interrupted

IF PFRestart() = TRUE THEN

SetDO do5,1;

ELSE

SetDO do5,0;

ENDIF

32 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.6.3 Power failure functionality example

2.1.7 Process support functionality

2.1.7.1 Overview

Purpose
Process support functionality provides some RAPID instructions that can be useful
when creating process applications. Examples of its use are:

• Analog output signals, used in continuous process application, can be set
to be proportional to the robot TCP speed.

• A continuous process application that is stopped with program stop or
emergency stop can be continued from where it stopped.

What is included
The process support functionality includes:

• The data type restartdata.
• Instruction for setting analog output signal: TriggSpeed.
• Instructions used in connection with restart: TriggStopProc and

StepBwdPath.

Limitations
The instruction TriggSpeed can only be used if you have the base functionality
Fixed Position Events.

Application manual - Controller software OmniCore 33
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.1 Overview

2.1.7.2 RAPID components

Data types
This is a brief description of each data type used for the process support
functionality. For more information, see the respective data type in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionData type

restartdata can contain the pre- and post-values of specified I/O sig-
nals (process signals) at the stop sequence of the robot movements.

restartdata

restartdata, together with the instruction TriggStopProc is used to
preserve data for the restart after program stop or emergency stop of
self-developed process instructions.

Instructions
This is a brief description of each instruction used for the process support
functionality. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

TriggSpeed is used to define the setting of an analog output to a value
proportional to the TCP speed.

TriggSpeed

TriggSpeed can only be used together with the option Fixed Position
Events.

TriggStopProc is used to store the pre- and post-values of all used
process signals.

TriggStopProc

TriggStopProc and the data type restartdata are used to preserve
data for the restart after program stop or emergency stop of self-de-
veloped process instructions.

StepBwdPath is used to move the TCP backwards on the robot path
from a RESTART event routine.

StepBwdPath

Functions
There are no RAPID functions for the process support functionality.

34 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.2 RAPID components

2.1.7.3 Process support functionality examples

Signal proportional to speed
In this example, the analog output signal that controls the amount of glue is set to
be proportional to the speed.
Any speed dip by the robot is time compensated in such a way that the analog
output signal glue_ao is affected 0.04 s before the TCP speed dip occurs. If
overflow of the calculated logical analog output value in glue_ao, the digital output
signal glue_err is set.

VAR triggdata glueflow;

!The glue flow is set to scale value 0.8 0.05 s before point p1

TriggSpeed glueflow, 0, 0.05, glue_ao, 0.8 \DipLag=:0.04,
\ErrDO:=glue_err;

TriggL p1, v500, glueflow, z50, gun1;

!The glue flow is set to scale value 1 10 mm plus 0.05 s

! before point p2

TriggSpeed glueflow, 10, 0.05, glue_ao, 1;

TriggL p2, v500, glueflow, z10, gun1;

!The glue flow ends (scale value 0) 0.05 s before point p3

TriggSpeed glueflow, 0, 0.05, glue_ao, 0;

TriggL p3, v500, glueflow, z50, gun1;

Tip

Note that it is also possible to create self-developed process instructions with
TriggSpeed using the NOSTEPIN routine concept.

Resume signals after stop
In this example, an output signal resumes its value after a program stop or
emergency stop.
The procedure supervise is defined as a POWER ON event routine and
resume_signals as a RESTART event routine.

PERS restartdata myproc_data :=
[FALSE,FALSE,0,0,0,0,0,0,0,0,0,0,0,0,0];

...

PROC myproc()

MoveJ p1, vmax, fine, my_gun;

SetDO do_close_gun, 1;

MoveL p2,v1000,z50,my_gun;

MoveL p3,v1000,fine,my_gun;

SetDO do_close_gun, 0;

ENDPROC

...

PROC supervise()

TriggStopProc myproc_data \DO1:=do_close_gun, do_close_gun;

Continues on next page
Application manual - Controller software OmniCore 35
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.3 Process support functionality examples

ENDPROC

PROC resume_signals()

IF myproc_data.preshadowval = 1 THEN

SetDO do_close_gun,1;

ELSE

SetDO do_close_gun,0;

ENDIF

ENDPROC

Move TCP backwards
In this example, the TCP is moved backwards 30 mm in 1 second, along the same
path as before the restart.
The procedure move_backward is defined as a RESTART event routine.

PROC move_backward()

StepBwdPath 30, 1;

ENDPROC

36 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.3 Process support functionality examples
Continued

2.1.8 Interrupt functionality

2.1.8.1 Overview

Purpose
The interrupt functionality in Advanced RAPID has some extra features, in addition
to the interrupt features always included in RAPID. For more information on the
basic interrupt functionality, see Technical reference manual - RAPID Overview.
Here are some examples of interrupt applications that Advanced RAPID facilitates:

• Generate an interrupt when a persistent variable change value.
• Generate an interrupt when an error occurs, and find out more about the

error.

What is included
The interrupt functionality in Advanced RAPID includes:

• Data types for error interrupts: trapdata, errdomain, and errtype .
• Instructions for generating interrupts: IPers and IError.
• Instructions for finding out more about an error interrupt: GetTrapData and

ReadErrData.

Application manual - Controller software OmniCore 37
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.8.1 Overview

2.1.8.2 RAPID components

Data types
This is a brief description of each data type in the interrupt functionality. For more
information, see the respective data type in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionData type

trapdata represents internal information related to the interrupt that caused
the current trap routine to be executed.

trapdata

errdomain is used to specify an error domain. Depending on the nature
of the error, it is logged in different domains.

errdomain

errtype is used to specify an error type (error, warning, state change).errtype

Instructions
This is a brief description of each instruction in the interrupt functionality. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

IPers (Interrupt Persistent) is used to order an interrupt to be generated
each time the value of a persistent variable is changed.

IPers

IError (Interrupt Errors) is used to order an interrupt to be generated each
time an error occurs.

IError

GetTrapData is used in trap routines generated by the instruction IError.
GetTrapData obtains all information about the interrupt that caused the
trap routine to be executed.

GetTrapData

ReadErrData is used in trap routines generated by the instruction IError.
ReadErrData read the information obtained by GetTrapData.

ReadErrData

ErrRaise is used to create an error in the program and the call the error
handler of the routine.ErrRaise can also be used in the error handler to
propagate the current error to the error handler of the calling routine.

ErrRaise

Functions
There are no RAPID functions for the interrupt functionality.

38 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.8.2 RAPID components

2.1.8.3 Interrupt functionality examples

Interrupt when persistent variable changes
In this example, a trap routine is called when the value of the persistent variable
counter changes.

VAR intnum int1;

PERS num counter := 0;

PROC main()

CONNECT int1 WITH iroutine1;

IPers counter, int1;

...

counter := counter + 1;

...

Idelete int1;

ENDPROC

TRAP iroutine1

TPWrite "Current value of counter = " \Num:=counter;

ENDTRAP

Error interrupt
In this example, a trap routine is called when an error occurs. The trap routine
determines the error domain and the error number and communicates them via
output signals.

VAR intnum err_interrupt;

VAR trapdata err_data;

VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

PROC main()

CONNECT err_interrupt WITH trap_err;

IError COMMON_ERR, TYPE_ERR, err_interrupt;

...

a:=3;

b:=0;

c:=a/b;

...

IDelete err_interrupt;

ENDPROC

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

SetGO go_err1, err_domain;

SetGO go_err2, err_number;

ENDTRAP

Application manual - Controller software OmniCore 39
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.8.3 Interrupt functionality examples

2.1.9 User message functionality

2.1.9.1 Overview

Purpose
The user message functionality is used to set up event numbers and facilitate the
handling of event messages and other texts to be presented in the user interface.
Here are some examples of applications:

• Get user messages from a text table file, which simplifies updates and
translations.

• Add system error number to be used as error recovery constants in RAISE
instructions and for test in ERROR handlers.

What is included
The user message functionality includes:

• Text table operating instruction TextTabInstall.
• Text table operating functions: TextTabFreeToUse, TextTabGet, and

TextGet.
• Instruction for error number handling: BookErrNo.

40 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.1 Overview

2.1.9.2 RAPID components

Data types
There are no RAPID data types for the user message functionality.

Instructions
This is a brief description of each instruction used for the user message
functionality. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

BookErrNo is used to define a new RAPID system error number.BookErrNo

TextTabInstall is used to install a text table in the system.TextTabInstall

Functions
This is a brief description of each function used for the user message functionality.
For more information, see the respective function in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

TextTabFreeToUse is used to test whether the text table name is free
to use (not already installed in the system).

TextTabFreeToUse

TextTabGet is used to get the text table number of a user defined text
table.

TextTabGet

TextGet is used to get a text string from the system text tables.TextGet

Application manual - Controller software OmniCore 41
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.2 RAPID components

2.1.9.3 User message functionality examples

Book error number
This example shows how to add a new error number.

VAR intnum sig1int;

!Introduce a new error number in a glue system.

!Note: The new error variable must be declared with the

! initial value -1

VAR errnum ERR_GLUEFLOW := -1;

PROC main()

!Book the new RAPID system error number

BookErrNo ERR_GLUEFLOW;

!Raise glue flow error if di1=1

IF di1=1 THEN

RAISE ERR_GLUEFLOW;

ENDIF

ENDPROC

!Error handling

ERROR

IF ERRNO = ERR_GLUEFLOW THEN

ErrWrite "Glue error", "There is a problem with the glue flow";

ENDIF

Error message from text table file
This example shows how to get user messages from a text table file.
There is a text table named text_table_name in a file named
HOME:/language/en/text_file.xml. This table contains error messages in english.
The procedure install_text is executed at event POWER ON. The first time it
is executed, the text table file text_file.xml is installed. The next time it is executed,
the function TextTabFreeToUse returns FALSE and the installation is not repeated.
The table is then used for getting user interface messages.

VAR num text_res_no;

PROC install_text()

!Test if text_table_name is already installed

IF TextTabFreeToUse("text_table_name") THEN

!Install the table from the file HOME:/language/en/text_file.xml

TextTabInstall "HOME:/language/en/text_file.xml";

ENDIF

!Assign the text table number for text_table_name to text_res_no

text_res_no := TextTabGet("text_table_name");

ENDPROC

...

!Write error message with two strings from the table text_res_no

Continues on next page
42 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.3 User message functionality examples

ErrWrite TextGet(text_res_no, 1), TextGet(text_res_no, 2);

Application manual - Controller software OmniCore 43
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.3 User message functionality examples

Continued

2.1.9.4 Text table files

Overview
A text table is stored in an XML file (each file can contain one table in one language).
This table can contain any number of text strings with encoding UTF-8 or
ISO-8859-1.

Explanation of the text table file
This is a description of the XML tags and arguments used in the text table file.

DescriptionArgumentTag

Represents a text table. A file can only contain one instance of
Resource.

Resource

The name of the text table. Used by the RAPID instruction
TextTabGet.

Name

Language code for the language of the text strings.Language
The file installed with the RAPID instruction TextTabInstall is
used for all languages. To use more than one language, install
one file per language using a unique file path name and a unique
Resource name.

Represents a text string.Text

The number of the text string in the table.Name

The text string to be used.Value

Comments about the text string and its usage.Comment

Example of text table file
<?xml version="1.0" encoding="iso-8859-1" ?>

<Resource Name="text_table_name" Language="en">

<Text Name="1">

<Value>This is a text that is </Value>

<Comment>The first part of my text</Comment>

</Text>

<Text Name="2">

<Value>displayed in the user interface.</Value>

<Comment>The second part of my text</Comment>

</Text>

</Resource>

44 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.4 Text table files

2.1.10 RAPID support functionality

2.1.10.1 Overview

Purpose
The RAPID support functionality consists of miscellaneous routines that might be
helpful for an advanced robot programmer.
Here are some examples of applications:

• Activate a new tool, work object or payload.
• Find out what an argument is called outside the current routine.
• Test if the program pointer has been moved during the last program stop.

What is included
RAPID support functionality includes:

• Instruction for activating specified system data: SetSysData.
• Function that gets original data object name: ArgName.
• Function for information about program pointer movement:

IsStopStateEvent.

Application manual - Controller software OmniCore 45
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.10.1 Overview

2.1.10.2 RAPID components

Data types
There are no data types for RAPID support functionality.

Instructions
This is a brief description of each instruction used for RAPID support functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

SetSysData activates (or changes the current active) tool, work object,
or payload for the robot.

SetSysData

Functions
This is a brief description of each function used for RAPID support functionality.
For more information, see the respective function in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

ArgName is used to get the name of the original data object for the
current argument or the current data.

ArgName

IsStopStateEvent returns information about the movement of the
program pointer.

IsStopStateEvent

46 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.10.2 RAPID components

2.1.10.3 RAPID support functionality examples

Activate tool
This is an example of how to activate a known tool:

!Activate tool1

SetSysData tool1;

This is an example of how to activate a tool when the name of the tool is only
available in a string:

VAR string tool_string := "tool2";

!Activate the tool specified in tool_string

SetSysData tool0 \ObjectName := tool_string;

Get argument name
In this example, the original name of par1 is fetched. The output will be "Argument
name my_nbr with value 5".

VAR num my_nbr :=5;

proc1 my_nbr;

PROC proc1 (num par1)

VAR string name;

name:=ArgName(par1);

TPWrite "Argument name "+name+" with value " \Num:=par1;

ENDPROC

Test if program pointer has been moved
This example tests if the program pointer was moved during the last program stop.

IF IsStopStateEvent (\PPMoved) = TRUE THEN

TPWrite "The program pointer has been moved.";

ENDIF

Application manual - Controller software OmniCore 47
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.1.10.3 RAPID support functionality examples

2.2 Analog Signal Interrupt

2.2.1 Introduction to Analog Signal Interrupt

Purpose
The purpose of Analog Signal Interrupt is to supervise an analog signal and
generate an interrupt when a specified value is reached.
Analog Signal Interrupt is faster, easier to implement, and require less computer
capacity than polling methods.
Here are some examples of applications:

• Save cycle time with better timing (start robot movement exactly when a
signal reach the specified value, instead of waiting for polling).

• Show warning or error messages if a signal value is outside its allowed range.
• Stop the robot if a signal value reaches a dangerous level.

What is included
The RobotWare base functionality Analog Signal Interrupt gives you access to the
instructions:

• ISignalAI

• ISignalAO

Basic approach
This is the general approach for using Analog Signal Interrupt. For a more detailed
example of how this is done, see Code example on page 50.

1 Create a trap routine.
2 Connect the trap routine using the instruction CONNECT.
3 Define the interrupt conditions with the instruction ISignalAI or ISignalAO.

Limitations
Analog signals can only be used if you have an industrial network option (for
example DeviceNet).

48 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.2.1 Introduction to Analog Signal Interrupt

2.2.2 RAPID components

Data types
Analog Signal Interrupt includes no data types.

Instructions
This is a brief description of each instruction in Analog Signal Interrupt. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

Defines the values of an analog input signal, for which an interrupt routine
shall be called.

ISignalAI

An interrupt can be set to occur when the signal value is above or below a
specified value, or inside or outside a specified range. It can also be spe-
cified if the interrupt shall occur once or repeatedly.

Defines the values of an analog output signal, for which an interrupt routine
shall be called.

ISignalAO

An interrupt can be set to occur when the signal value is above or below a
specified value, or inside or outside a specified range. It can also be spe-
cified if the interrupt shall occur once or repeatedly.

Functions
Analog Signal Interrupt includes no RAPID functions.

Application manual - Controller software OmniCore 49
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.2.2 RAPID components

2.2.3 Code example

Temperature surveillance
In this example a temperature sensor is connected to the signal ai1.
An interrupt routine with a warning is set to execute every time the temperature
rises 0.5 degrees in the range 120-130 degrees. Another trap routine, stopping the
robot, is set to execute as soon as the temperature rise above 130 degrees.

VAR intnum ai1_warning;

VAR intnum ai1_exeeded;

PROC main()

CONNECT ai1_warning WITH temp_warning;

CONNECT ai1_exeeded WITH temp_exeeded;

ISignalAI ai1, AIO_BETWEEN, 130, 120, 0.5, \DPos, ai1_warning;

ISignalAI \Single, ai1, AIO_ABOVE_HIGH, 130, 120, 0, ai1_exeeded;

...

IDelete ai1_warning;

IDelete ai1_exeeded;

ENDPROC

TRAP temp_warning

TPWrite "Warning: Temperature is "\Num:=ai1;

ENDTRAP

TRAP temp_exeeded

TPWrite "Temperature is too high";

Stop;

ENDTRAP

50 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.2.3 Code example

2.3 Connected Services

2.3.1 Overview

Note

ABB Connected Services is the new name for the functionality previously known
as ABB Ability. During a period of time, both names will appear in and on our
products.

Description
Connected Services is a functionality for ABB robot controllers to connect to ABB
Connected Services Cloud by using 3G/4G, Wi-Fi, or wired connectivity. Connected
Services collects the service information from the controller.

Purpose
The primary purpose of Connected Services is to collect service information from
the controller.
These service information will be available through MyRobot, Connected Services
portal, or pushed locally.

What is included
The RobotWare base functionality Connected Services gives you access to:

• a Connected Services agent software to manage the connectivity and the
service data collection.

• system parameters used to enable and configure the connectivity.
• status and information pages.
• dedicated event logs for key events of Connected Services.
• connectivity through Connected Services Gateway.
• connectivity through the public port.

Prerequisites
The Connected Services function requires that the controller is included in a service
agreement with ABB. Contact your local ABB office to create a service agreement
with Connected Services and get access to MyRobot website to perform the
registration after the connection.

Note

MyRobot is the ABB website which gives access to the service information of a
robot controller under a service agreement.

Continues on next page
Application manual - Controller software OmniCore 51
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.1 Overview

Basic workflow
Connected Services is available natively as a plug and connect solution in
RobotWare. The setup concept is to:

1 Provides internet connectivity to the robot controller.
2 Configure connected services and startup the connection.
3 Register the controller through MyRobot registration page.

Once Connected Services is connected and registered, the data collection will run
transparently in the background.

Limitations
The controller identification is done using the controller serial number and must
match the serial number defined in the service agreement.

Power On Connect
Using a Connected Services Gateway 3G or 4G will provide automatic connectivity
after Power On of the controller without any configuration.

Production Registration
ABB will securely pre register Connected Services during production process to
avoid the manual registration.
The manual registration is still available when needed.

52 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.1 Overview
Continued

2.3.2 Connected Services connectivity

Connected Services connection concept
The concept of Connected Services is that a virtual Software Agent is implemented
inside the controller and it communicates securely with the ABB Connected Services
Cloud through internet.

Note

The connectivity of the controller through the public network requires a Firewall
provided by the customer.

The communication is secured and encrypted using HTTPS (secure HTTP). The
communication is possible only from the controller to ABB Cloud to keep the
customer network isolated from any external Internet access. The following figure
describe these concepts.

OmniCore Controller

Connected

Services

gateway

ABB Connected

Service Cloud

ABB

Connected Services

Public Connector

rseprod.abb.com

ABB

firewall

Internet

Customer

firewall

ABB &

Customer

MyRobot

Website Internal

firewall

Service

information

Connected

 Services

agent

3G/4G

Wi-Fi

Wired

ABB Connect/LAN4

Public/WAN

H
T

T
P

S
:4

4
3

H
T

T
P

S
:4

4
3

xx1900000977

Application manual - Controller software OmniCore 53
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.2 Connected Services connectivity

2.3.3 Connected Services registration

Connected Services startup
The Connected Services startup is based on the following steps:

• (0) Connected Services preparation
• (1) Connected Services configuration
• (2) Connected Services connectivity
• (3) Connected Services registration
• (4) Connected Services connected and registered

When these steps are done, the software agent is securely connected and identified
with a client certificate. The following figure describes these concepts:

ABB Connected

Services Center

Internet

Internet

My RobotCustomer/

ABB CS Admin

Customer/

ABB CS Tech On Site

3c3b

3a 1a 0

2d
2b

2c

2a

3d

4

xx1500003226

DescriptionStep

Check controller S/N and internet connectivity0

Enable CSE and set up connectivity configuration1a

CS connectivity in place2a

Low poll for registration2b

Registration not trusted (get reg code)2c

Display registration code2d

Get registration code3a

Give controller S/N and registration code3b

Select controller S/N in SA and register with registration code3c

Registration trusted (client certificate)3d

Connected and registered secure CS session4

Continues on next page
54 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.3 Connected Services registration

Connected Services preparation
1 Verify that the service agreement for this controller is available with ABB.
2 Verify the controller serial number with the serial number found in the

controller cabinet.
3 Verify and provide Internet connectivity to the robot controller.

Connected Services configuration
1 Configure the connectivity parameters based on connection type, see

Configuring Connected Services using FlexPendant on page 60.

Connected Services connectivity
1 The software agent connects to ABB Connected Services Cloud.
2 An initial registration process starts based on the selected polling rate.
3 The initial registration is incomplete and not yet fully trusted.
4 A registration code is received to finalize the trust relation.
5 The registration code is made available on the Connected Services

registration page.

Connected Services registration
1 The customer/ABB on site provides the controller serial number and

registration code to the Connected Services administrator for registration.
2 The Connected Services administrator validates this registration code in

MyRobot/Registration for ABB Connected Services on its service agreement.
3 The registration trust starts and implements a client certificate in the

controller.

Connected Services connected and registered
1 The controller is connected, registered, and identified as in the service

agreement.
2 The connection is trusted with a client certificate.
3 Connected Services is now actively running on the robot controller.

Note

In case of Power On Connect with 3G or 4G Connected Services Gateway and
production registration, all these process is done automatically when the controller
is powered.

Application manual - Controller software OmniCore 55
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.3 Connected Services registration

Continued

2.3.4 Summary of Connected Services paths in FlexPendant

Configuration
In Flexpendant the Connected Services configuration are available in:

• CS Gateway 3G: Settings > ABB Connected Services > 3G Connection
• CS Gateway WiFi: Settings > ABB Connected Services > WiFi Connection
• CS Gateway Wired:Settings >ABBConnectedServices >WiredConnection

Note

Connected Services Gateway 4G is configured through Wired Connection.

Status
In FlexPendant the Connected Services status are available in:

• Network: Settings > ABB Connected Services > Network Status
• CS Gateway: Settings > ABB Connected Services > Connectivity Status
• Connected Services summary: QuickSet > Connected Services
• Connected Services details: Settings > ABB Connected Services >

Connected Services Status
• Reset Connected Services: Operate > Service Routine

Logs
In Flexpendant the Connected Services logs are available in:

• Connection Logs (3G/WiFi): Settings >Backup and Recovery >Connection
Logs

• Details Logs: Settings > Backup and Recovery > System Diagnostic

56 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.4 Summary of Connected Services paths in FlexPendant

2.3.5 Summary of Connected Services paths in RobotStudio

Configuration
In RobotStudio the Connected Services configuration are available in:

• CS Gateway 3G:Controller >Configuration >Communication >CSGateway
3G

• CS Gateway WiFi: Controller > Configuration > Communication > CS
Gateway WiFi

• CS Gateway Wired: Controller > Configuration > Communication > CS
Gateway Wired

Note

Connected Services Gateway 4G is configured through Wired Connection.

Status
In RobotStudio the Connected Services status are available in:

• Connected Services Summary/Details: Controller > Properties > Device
Browser > Software Resources > Connected Services

• Reset Connected Services: Not implemented

Logs
In RobotStudio the Connected Services logs are available in:

• Connection Logs (3G/4G/Wi-Fi): Not implemented
• Details Logs: Controller > Properties > Save Diagnostic

Application manual - Controller software OmniCore 57
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.5 Summary of Connected Services paths in RobotStudio

2.3.6 Configuration - system parameters

Introduction
This section provides a brief description of system parameters used for the
Connected Services. For more information see Technical referencemanual - System
parameters.

Connected Services connection
The following parameters belong to the topic Communication, and the type
Connected Services. For more information, see the respective parameter in
Technical reference manual - System parameters.

DescriptionParameter

Enables or disables the Connected Services connection between
the controller and the server.

Enabled

Indicates if the communication is done on ABB Connect (ABB
Connected Services Gateway solution), Public, or Custom network.

Note

If the connection type is configured as Public or Custom, then en-
able Connected Services on Firewall Settings. For more details, see
the section Firewall settings in Operating manual - Integrator's
guide OmniCore.

Connection Type

Defines the internet gateway IP of the connected network when the
connection type is private. This is valid for the Connection Type
Custom.

Internet Gateway IP

Forces the Internet Gateway to use for connectivity.

Defines the internet DNS IP of the connected network. This is valid
for the Connection Type Custom.

Internet DNS IP

Forces the DNS to use for connectivity.

Note

The DNS can be set to blank if:
• the proxy is defined.
• the DNS resolution is done with the proxy.
• the proxy is provided as an IP address.

Defines if a proxy is used to access the internet and its name/ad-
dress, port, and authentication.

Proxy Used

Defines the proxy authentication type. Basic will use HTTP basic
authentication including user and password. None will not use any.

Proxy Auth

Defines the frequency of polling for specific synchronization with
the sever. The available values are slow and fast.

Server Polling

For details about the behavior of events for server polling, see De-
scription of behavior of events for server polling on page 82.

Enables extensive logging for debugging the issues.Debug Mode

Defines the level of logging if Debug Mode is enabled.Trace Level

Continues on next page
58 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.6 Configuration - system parameters

DescriptionParameter

Defines the compatibility for different robot controller's data format,
cloud solution, and specific features. Following are the available
modes:

• 1.0 IRC5 Compatibility

Note

By default, the 1.0 IRC5 Compatibility mode is enabled.

Connected Services
Mode

WAN configuration (Public connectivity)
The WAN IP/Mask/Gateway configuration is done in RobotStudio or on the
FlexPendant. The WAN Ethernet port configuration can give access to the Internet
on the controller without using the Connected Services Gateway. The port is defined
by its IP, Mask, and possible Gateway. For details about Public (WAN) configuration,
see the section Configuring Connected Service Gateway using FlexPendant in
Operating manual - Integrator's guide OmniCore.

Note

A firewall must be installed by the customer, if the Public/WAN port is connected
to Internet.

DNS configuration (Public connectivity)
These parameters belong to the topic Communication and the type DNS Client. A
DNS server need to be defined to resolve the name of the ABB Connected Services
connector (rseprod.abb.com) to its IP address, if Public/WAN port is used for
internet connectivity. For more details, see Type DNS Client in Technical reference
manual - System parameters.

Note

For quick testing, use a temporary DNS defined as 8.8.8.8 (Google DNS), then
switch to customer recommended DNS server IP.

Application manual - Controller software OmniCore 59
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.6 Configuration - system parameters

Continued

2.3.7 Configuring Connected Services using FlexPendant

2.3.7.1 Introduction

Overview
This section explains how Connected Services is configured using the controller
FlexPendant based on the available internet connectivity. Internet connectivity can
be provided in multiple ways.

• Connected Services Gateway module (3G, 4G, Wi-Fi, or wired)
• Direct internet connection on customer Public (WAN) network
• Direct internet connection on custom network

60 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.7.1 Introduction

2.3.7.2 Enable or disable Connected Services using FlexPendant

Enabling or disabling Connected Services
This section provides information about enabling or disabling Connected Services
using FlexPendant.

Note

Connected Services is enabled by default.

Use the following procedure to enable or disable Connected Services on the
FlexPendant:

1 On the start screen, tap Settings, and then select ABB Connected Services
from the menu.

2 Tap Connected Services on the left pane.
3 In the Enable Connected Services field tap and select the value Yes or No.
4 Tap Apply.

The Restart confirmation message is displayed.
5 Tap OK.

The controller is restarted and Connected Services is enabled or disabled
based on the selection.

Application manual - Controller software OmniCore 61
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.7.2 Enable or disable Connected Services using FlexPendant

2.3.7.3 Configure Connected Services based on connection type using FlexPendant

Overview
Connected Services can be configured in the following ways depending on the
available connection type:

• ABB Connect
• Public
• Custom

Configuring the connection type ABB Connect
Connected Services is configured with the connection type ABB Connect when
the ABB Connected Services Gateway solution is connected.

Note

The connection type ABB Connect is enabled by default.

Use the following procedure to configure the connection type ABB Connect using
FlexPendant:

1 On the start screen, tap Settings, and then select ABB Connected Services
from the menu.

2 Tap Connected Services on the left pane.
The configuration parameters for Connected Services is displayed.

3 In the Connection Type list, tap and select ABB Connect.

Note

The ABB Connected Services network can be configured based on the
available CS Gateway (3G, 4G, Wi-Fi, or Wired). For details, see Operating
manual - Integrator's guide OmniCore.

4 Tap Apply.
The Restart confirmation message is displayed.

5 Tap Yes.
The controller is restarted.
Connected Services starts communicating to the server based on the
configuration.
Check the connectivity status or event logs. For more details, see Connected
Services information on page 74.

Continues on next page
62 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.7.3 Configure Connected Services based on connection type using FlexPendant

Configuring the connection type Public
Connected Services can be configured with the connection type Public when the
communication is done on customer Public (WAN) network using the IP, the default
gateway and DNS received through DHCP or statically configured.

Note

The Public network and DNS can be configured statically or automatically (via
DHCP). For more details, seeConfiguration of public network using FlexPendant
on page 65.

Note

If the connection type is configured as Public, then enable Connected Services
on Firewall Settings. For more details, see the section Firewall settings in
Operating manual - Integrator's guide OmniCore.

Use the following procedure to configure the public network using FlexPendant:
1 On the start screen, tap Settings, and then select ABB Connected Services

from the menu.
2 Tap Connected Services.

The configuration parameters for connected services are displayed.
3 In the Connection Type list, tap and select Public.
4 Tap Apply.

The Restart confirmation message is displayed.
5 Tap Yes.

The controller is restarted.
Connected Services starts communicating to the server based on the
configuration.
Check the connectivity status or event logs. For more details, see Connected
Services information on page 74.

Configuring the connection type Custom
Connected Services can be configured with the connection type Custom when the
controller has to specify a default Gateway and DNS available on the network.

Note

If the connection type is configured asCustom, then enable Connected Services
on Firewall Settings. For more details, see the section Firewall settings in
Operating manual - Integrator's guide OmniCore.

Use the following procedure to configure the connection type Custom using
FlexPendant:

1 On the start screen, tap Settings, and then select ABB Connected Services
from the menu.

Continues on next page
Application manual - Controller software OmniCore 63
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.7.3 Configure Connected Services based on connection type using FlexPendant

Continued

2 Tap Connected Services on the left pane.
The configuration parameters for connected services is displayed.

3 In the Connection Type list, tap and select Custom.
4 In the Internet Gateway IP field, type the IP address of internet gateway.
5 In the Internet DNS IP field, type the IP address of Internet DNS.
6 Tap Apply.

The Restart confirmation message is displayed.
7 Click OK.

The controller is restarted.
Connected Services starts communicating to the server based on the
configuration.
Check the connectivity status or event logs. For more details, see Connected
Services information on page 74.

64 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.7.3 Configure Connected Services based on connection type using FlexPendant
Continued

2.3.7.4 Configuration of public network using FlexPendant

Configuring IP and DNS Statically
Use the following procedure to statically configure IP and DNS using FlexPendant:

1 On the start screen, tap Settings, and then select Network from the menu.
2 Tap Public Network on the left pane.
3 Select the option Use the following IP Address or Use the following DNS

server addresses.
4 Enter the values in IP address, Subnet mask, Default gateway, Preferred

DNS server, and Alternate DNS server fields.
5 Tap Apply.

The IP and DNS are configured statically.

Configuring IP and DNS Automatically
Use the following procedure to automatically configure IP and DNS using
FlexPendant:

1 On the start screen, tap Settings, and then select Network from the menu.
2 Tap Public Network on the left pane.
3 Select the option Automatically get an IP Address or Automatically get

DNS server addresses.
The IP address and DNS server address is uploaded automatically.

4 Tap Apply.
The IP and DNS are configured automatic.

Application manual - Controller software OmniCore 65
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.7.4 Configuration of public network using FlexPendant

2.3.7.5 Configure internet connection with proxy using FlexPendant

Procedure
The following procedure provides information about configuring the Connected
Services from the FlexPendant when there is Internet connection with proxy.

1 On the start screen, tap Settings, and then select ABB Connected Services
from the menu.

2 Tap Connected Services.
The configuration parameters for Connected Services are displayed.

3 In the Proxy Used field, change the value to Yes.
The proxy parameters are displayed.

4 In the Proxy Name field, type a name for the proxy.
5 In the Proxy Port field, type the proxy port number.
6 In the Proxy Auth field, select Basic for basic authentication or select None

for no authentication from the drop-down list.

Note

Define the proxy user name and password for the basic authentication.
Even if a proxy is used, it is mandatory to define a DNS for name resolution.

Note

If your RobotWare version is between RW 7.8.1 and RW 7.10, it is
mandatory to define a username and password in proxy configuration,
even if is not used.

7 Tap Apply and restart the controller to take effect of the changes.

66 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.7.5 Configure internet connection with proxy using FlexPendant

2.3.8 Configuring Connected Services using RobotStudio

2.3.8.1 Introduction

Overview
This section explains how the Connected Services is configured using RobotStudio
with the controller based on the available internet connectivity. Internet connectivity
can be provided in multiple ways.

• Connected Services Gateway Module (3G, 4G, Wi-Fi, or wired)
• Direct internet connection on Customer Public (WAN) network
• Direct internet connection on custom network

Application manual - Controller software OmniCore 67
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.8.1 Introduction

2.3.8.2 Enable or disable connected services using RobotStudio

Enabling or disabling connected services
This section provides information about enabling or disabling Connected Services
using RobotStudio.

Note

Connected services is enabled by default.

Use the following procedure to manage the enabling or disabling of the connected
services feature:

1 Add controller in RobotStudio.
2 Click controller Configuration.
3 Right-click on Communication and select Configuration Editor.

The Configuration Editor is displayed.
4 Select Connected Services.

The configuration parameters for connected services is displayed.
5 Right-click on any field and select Edit Connected Services(s).

The Instance Editor is displayed.
6 In the Enabled field select the value Yes or No.
7 Click OK.
8 Restart the controller.

The connected services is enabled or disabled based on the selection.

68 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.8.2 Enable or disable connected services using RobotStudio

2.3.8.3 Configure connected services based on connection type using RobotStudio

Overview
Connected services can be configured in the following three ways depending on
the available connection type:

• ABB Connect
• Public
• Custom

Configuring the connection type ABB Connect
Connected services is configured with the connection type ABB Connect when
the ABB Connected Services Gateway solution is connected.

Note

The connection type ABB Connect is enabled by default.

Use the following procedure to configure the connection type ABB Connect using
RobotStudio:

1 In the Controller tab, click Configuration.
2 Right-click on Communication and select Configuration Editor.

The Configuration Editor is displayed.
3 Select Connected Services.

The configuration parameters for connected services is displayed.
4 Right-click on any field and select Edit Connected Services(s).

The Instance Editor is displayed.
5 In the Connection Type field, select the value ABB Connect.

Note

Network can be configured based on the available CS Gateway (3G, 4G,
Wi-Fi, or Wired). For details, see Operating manual - Integrator's guide
OmniCore.

6 Click OK.
7 Restart the controller.

The connected services start communicating to the server based on the
configuration.
Check the connectivity status in the device browser. For more details, see
Connected Services information on page 74.
Also refer to the event logs generated. For more details, see Technical
reference manual - Event logs for RobotWare 7.

Continues on next page
Application manual - Controller software OmniCore 69
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.8.3 Configure connected services based on connection type using RobotStudio

Configuring the connection type Public
Connected services can be configured with the connection type Public when the
communication is done on customer WAN network and when there is a default
gateway and DNS received.

Note

Public network and DNS can be configured statically or automatic (through
DHCP). For more details, seeConfiguration of public network using RobotStudio
on page 72.

Note

If the connection type is configured as Public, then enable Connected Services
on Firewall Settings. For more details, see the section Firewall settings in
Operating manual - Integrator's guide OmniCore.

Use the following procedure to configure the the connection type Public using
RobotStudio:

1 In the Controller tab, click Configuration.
2 Right-click on Communication and select Configuration Editor.

The Configuration Editor is displayed.
3 Click Connected Services.

The configuration parameters for connected services is displayed.
4 Right-click on any field and select Edit Connected Services(s).

The Instance Editor is displayed.
5 In the Connection Type field, select the value Public Network.
6 Click OK.
7 Restart the controller.

The connected services start communicating to the server based on the
configuration.
Check the connectivity status in the device browser. For more details, see
Connected Services information on page 74.
Also refer to the event logs generated. For more details, see Technical
reference manual - Event logs for RobotWare 7.

Configuring the connection type Custom
Connected services can be configured with the connection type Custom when the
controller has to specify a default gateway and DNS available on the network.

Note

If the connection type is configured asCustom, then enable Connected Services
on Firewall Settings. For more details, see the section Firewall settings in
Operating manual - Integrator's guide OmniCore.

Continues on next page
70 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.8.3 Configure connected services based on connection type using RobotStudio
Continued

Use the following procedure to configure the connection type Custom using
RobotStudio:

1 In the Controller tab, click Configuration.
2 Right-click on Communication and select Configuration Editor.

The Configuration Editor is displayed.
3 Click Connected Services.

The configuration parameters for connected services is displayed.
4 Right-click on any field and select Edit Connected Services(s).

The Instance Editor is displayed.
5 In the Connection Type field, select the value Private Network.
6 In the Internet Gateway IP field, type the IP address of internet gateway.
7 In the Internet DNS IP field, type the IP address of Internet DNS.
8 Click OK.
9 Restart the controller.

The connected services start communicating to the server based on the
configuration.
Check the connectivity status in the device browser. For more details, see
Connected Services information on page 74.
Also refer to the event logs generated. For more details, see Technical
reference manual - Event logs for RobotWare 7.

Application manual - Controller software OmniCore 71
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.8.3 Configure connected services based on connection type using RobotStudio

Continued

2.3.8.4 Configuration of public network using RobotStudio

Configuring IP Statically
Use the following procedure to configure statically IP using RobotStudio:

1 Right-click on the controller and select Properties > Network Settings.
The Network settings window is displayed.

2 Select the option Use following IP address.
3 Enter the values in IP address, Subnet mask, Default gateway fields.
4 Click OK and restart the controller

The IP is configured.

Configuring DNS Statically
The following procedure provides information about configuring the Connected
Services from RobotStudio when there is direct internet connection with statically
DNS.

1 In the Controller tab, click Configuration.
2 Right-click on Communication and select Configuration Editor.

The Configuration Editor is displayed.
3 Click DNS Client.

The configuration parameters for DNS Client is displayed.
4 Right-click on any field and select Edit DNS Client(s).

The Instance Editor is displayed.
5 In the Enabled field change the value to Yes.
6 In the 1st Name Server field type the server IP.
7 Click OK and restart the controller for the changes to take effect.

Configuring IP Automatic (DHCP)
Use the following procedure to configure IP automatic using RobotStudio:

1 Right-click on the controller and select Properties > Network Settings.
The Network settings window is displayed.

2 Select the option Obtain an IP address automatically.
The IP address is uploaded automatically.

3 Click OK and restart the controller
The IP and DNS shall be received automatically.

Note

It is still possible to define manual DNS with automatic IP. If there is conflict
between manual and automatic DNS, manual DNS has priority.

72 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.8.4 Configuration of public network using RobotStudio

2.3.8.5 Configure internet connection with proxy using RobotStudio

Procedure
The following procedure provides information about configuring the Connected
Services from the RobotStudio when there is internet connection with proxy.

1 In the Controller tab, click Configuration.
2 Right-click on Communication and select Configuration Editor.

The Configuration Editor is displayed.
3 Select Connected Services.

The configuration parameters for connected services is displayed.
4 Right-click on any field and select Edit Connected Services(s).

The Instance Editor is displayed.
5 In the Proxy Used field, select the value Yes.

The proxy parameters are displayed.
6 In the Proxy Name field, type a name for the proxy.
7 In the Proxy Port field, type the proxy port number.
8 In the Proxy Auth field, from the drop-down list, select Basic for basic

authentication or select None for no authentication.

Note

Define the Proxy User and Proxy Password fields for the basic
authentication. Even if a proxy is used, it is mandatory to define a DNS for
name resolution.

Note

If your RobotWare version is between RW 7.8.1 and RW 7.10, it is
mandatory to define a username and password in proxy configuration,
even if is not used.

9 Click OK.
The controller is restarted and the changes are applied.

Application manual - Controller software OmniCore 73
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.8.5 Configure internet connection with proxy using RobotStudio

2.3.9 Connected Services information

Connected Services pages

Introduction
The Connected Services information pages are available in FlexPendant under
Settings >ABBConnected Services >Connected Services Status. The following
Connected Services Status information pages are available:

• Overview
• Connectivity
• Registration
• Advanced

Note

The Connected Services information pages are available in RobotStudio under
Controller Properties >DeviceBrowser >Software resources >Communication
> Connected Services.

Note

The information on a page can be refreshed by changing the page or by pressing
the Refresh button. The Refresh button also forces a connection with the server
if the software agent is waiting (for example, wait for registration
acknowledgement from MyRobot). This is useful in case of slow polling when
Server Polling is set to Slow.

Overview page
The Overview page provides a summary of the Connected Services status and
information. If the status is not active then the other pages provide more detailed
information.

ExamplePossible valuesDescriptionField

Property

YesYes/NoDisplays the value of the master
configuration switch for turning the
Connected Services on/off.

Enabled

ActiveFor a description
of values, see
CSE status on
page 80.

Displays the current status to see
whether there is a need to navigate
to the Server connection page or
Registration page.

Status

12-45678Controller Serial
number

Displays the identifier that is used
to identify the controller in Connec-
ted Services.

Serial number

RobotOS_1.00.0-
379

Robot OS Ver-
sion number

Displays the Robot OS Version that
is sent to the server.

Robot OS Ver-
sion

RobotCon-
trol_7.0.0-405.In-
ternal+405

Robot Control
version name

Displays the Robot Control version
that is sent to the server.

Robot Control
version

Continues on next page
74 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information

ExamplePossible valuesDescriptionField

SA_FR12_16"Name of the ser-
vice agreement"

To verify that the controller is asso-
ciated to the expected service
agreement.

Service Agree-
ment

"-"

ABB Robotics"Customer Name
of the service
agreement"

To verify that the controller is asso-
ciated to the expected service
agreement.

Customer name

"-"

France"Country of the
service agree-
ment"

To verify that the controller is asso-
ciated to the expected service
agreement.

Country

"-"

Robotics CloudRobotics CloudDisplays the type of the server con-
nected services is connected.

ABB server

Connectivity page
TheConnectivity page provides a summary of the Connected Services connectivity
to the server.

ExamplePossible
values

DescriptionField

ActiveFor a de-
scription of
values, see
CSE status
on page 80.

Displays the current status to see
whether there is a need to navigate
to the Connectivity page or Regis-
tration page.

Status

ConnectedFor a de-
scription of
values, see
CSEconnec-
tion status
on page 80 .

Displays the status of communica-
tion with the server and the type of
error.

Connection
Status

"HH:MM:SS ago"Displays the relative time since the
information on the Connectivity
page has been generated.

Last updated

DSQC 1039 3GDisplays the type of hardware gate-
way and connection IP.

Note

4G Gateway is displayed as
DSQC1041 Wired.

Hardware gate-
way Connected on IP:

192.168.126.1

Connected Services -
rseprod.abb.com

""
Server name

Displays the name of the server that
software agent is configured with.

Server name

Continues on next page
Application manual - Controller software OmniCore 75
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information

Continued

ExamplePossible
values

DescriptionField

138.227.175.43 for
rseprod.abb.com

""
Server IP

Displays the IP address of the serv-
er and the port number used for
connection. The IP address is the
result of DNS name resolution done
by software agent.

Note

The IP address of resprod.abb.com
is displayed only if DNS is resolved
locally. If the system is unable to
resolve the IP, value displayed will
be "none".
If proxy is configured and the DNS
resolution is done by the proxy
server then the value displayed will
be "Proxy".

Server IP

Connected Services -
rseprod.abb.com

""
Server name

Displays the server certificate name
information.

Server certific-
ate name

Untrusted
(Server)

ABB issuing CA 6""Displays the name of the server
certificate issuer.

Server certific-
ate issuer DigiCert SHA2 Secure

Server CA
Issuer
Untrusted
(Issuer)

Oct 02 08:07:12 2020
GMT

""
Issuer

Displays the server certificate date.Server certific-
ate valid from

Issued
(Date)

Nov 21 07:09:28 2021
GMT

""
Issuer

Displays the server certificate date.Server certific-
ate valid until

Expired
(Date)

07-000036Displays the name of the client cer-
tificate device.

Client certificate
device

Remote-Service-
PROD-Issuing-CA-1

Displays the name of the client cer-
tificate issuer.

Client Certificate
issuer

Mar 15 05:38:41 2019
GMT

Displays from which date onwards
the client certificate is valid.

Client Certificate
valid from

Mar 15 05:38:41 2020
GMT

Displays till which date the client
certificate is valid.

Client Certificate
valid until

15E37B17000100
002D0B

Displays the serial number of the
client certificate.

Client Certificate
serial number

106.197.204.16Displays the IP which is used to
connect to internet.

Internet IP

Continues on next page
76 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information
Continued

ExamplePossible
values

DescriptionField

16-01-08 13:52:33Displays the controller date and
time details.

Note

It is important to set the correct time
in the controller as this is needed
for the certificate process.

Controller time

PublicDisplays the type of network connec-
tion used.

Connection type
ABB Con-
nect
Custom

DHCP: 10.140.198.55/
255.255.255.0/
10.140.198.1/ plugged

NoIP
Static
DHCP

Displays the network information for
the Public port.

Public network
information

Static: 192.168.126.2/
255.255.255/ 0.0.0.0/
plugged

NoIP
Static
DHCP

Displays the network information for
the ABB Connect port.

ABB Connect
network informa-
tion

8.8.8.8:53Displays the DNS server informa-
tion.

System DNS

192.168.126.1Displays the gateway used for creat-
ing the routes.

Gateway used

192.168.126.1:53Displays the DNS values that are
currently used.

DNS used

Route 1 :
13.79.129.11/32 =>
192.168.126.1

Displays the routes created by
Connected Services.

Route 1-8

Registration page
TheRegistration page provides a summary of the Connected Services registration.

ExamplePossible valuesDescriptionField

ActiveFor a description
of values, see
CSE status on
page 80.

Displays the current status to see
whether there is a need to navigate
to the Server connection page or
Registration page.

Status

Register with
code in MyRobot

For a description
of values, see
CSE registration
status on
page 81.

Displays the registration status.Registration
Status

456735"-"Displays the registration code. This
code can be used to register using
MyRobot.

Registration
code Code value

Continues on next page
Application manual - Controller software OmniCore 77
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information

Continued

Advanced page
The Advanced page provides advanced information about the dialog between
software agent and server.

ExamplePossible valuesDescriptionField

GetMessageRegisterDisplays the last message sent.Last HTTP mes-
sage CheckRegistered

LogMessage
GetMessage
GetConfig
SendGetSpecific-
Code
DownLoadFile
AcknowledgeMes-
sage
BoxUpload
GetRSEAgree-
mentInformation
SendDeviceIn-
formation
RequestClientCer-
tificate
RenewClientCerti-
ficate
periodicDeviceUp-
dateInformation

Sent 00:01:28
ago

Displays the date and time when the
last message was sent.

Last HTTP mes-
sage time

Not AvailableNot Available - if
no error

Displays the HTTP error when the
last message was sent and the
message ID if 4XX.

Last HTTP error

Error HTTP XXX
+ Message

GetMessage in
70 seconds

Displays the next message to send
and the date to send the message.

Next message

Not AvailableNot AvailableDisplays the last command received
from server.

Last command
Reboot
Reset
Ping
Diagnostic
...

20-NDisplays the number of times the
software Agent been auto-restarted.
This is used to see if watchdog has
restarted.

Restart counter
If not Enabled,
then display 0

1.0.0Displays the currently running con-
nector version information.

Connector ver-
sion

Continues on next page
78 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information
Continued

ExamplePossible valuesDescriptionField

StartedStartedDisplays the status of the data col-
lector.

Data Collector
status Not Started

None
Downloaded
Download Failed
Failed
Stopped
Disabled

Displays the last registration date
and time to server of controller.

Last registered

11-07-2020
08:33:35

Displays the last date and time on
which the controller detects a suc-
cessful connection with the server.

Last connected

FastFastDisplays the Server polling configur-
ation. Server polling is related to the
calculation of connection cost.

Server polling
Slow

17.0KB/24.17KBDisplays the number of bytes
sent/received.

Bytes sent/re-
ceived

Active ModeFor a description
of values, see
CSE mode on
page 82.

Displays the status of the connected
services mode.

Connected Ser-
vices mode

50-N for each
server error

Displays a count of the following
servers errors:

1 Connection errors
2 Connection not available er-

rors
3 Authentication errors
4 Request errors
5 Timeout errors
6 Proxy errors
7 Unknown errors

Server errors
0
1
0
1
0
0

Baltimore Cyber-
Trust Root

Displays the name of the root certi-
ficate issuer.

Root certificate
issuer

DigiCert Global
Root CA

Baltimore Cyber-
Trust Root

Displays the name of the root certi-
ficate subject.

Root certificate
subject

DigiCert Global
Root CA

May 12 18:46:00
2000 GMT

Displays from which date onwards
the root certificate is valid.

Root certificate
valid from

May 12 18:46:00
2006 GMT

May 12 18:46:00
2025 GMT

Displays till which date the root
certificate is valid.

Root certificate
valid until

May 12 18:46:00
2031 GMT

Continues on next page
Application manual - Controller software OmniCore 79
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information

Continued

Data collectors page
The Data Collectors are the components used to collect the data required by ABB
Connected Services Cloud. The Data Collectors are updatable OTA (Over The Air)
from ABB Cloud.
The Data Collector page provides information about the state and version details
of different data collectors.

ExamplePossible valuesDescriptionField

1.0.4DisabledDisplays the status and version in-
formation of Connected Services
data collector.

OmniCore Con-
nected Services Version informa-

tion

Description of values in Connected Services information

CSE status
The following table gives the information of CSE status:

DescriptionValueCode

Connected Services status is failed.FailedBASE_FAILED

Connected Services status is initializing.InitializingBASE_INITIALIZING

Connected Services status is active.ActiveBASE_ACTIVE

Connected Services status is trying to connect.Trying to connectBASE_CONNECT

Connected Services status is shutdown mode.Shutdown modeBASE_SHUTDOWN

Connected Services status is unknown.UnknownUNKNOWN_STATUS

Connected Services status is sleep mode.SleepBASE_SLEEP

CSE connection status
The following table gives the information of CSE connection status:

DescriptionValueCode

Connection status request is
timed out.

Request timed outSERVER_REQUEST_TIMEOUT_ERROR

Connection status in connected.ConnectedSERVER_CONNECTED

Connection status server is not
reachable.

Server not reach-
able

SERVER_NETWORK_ERROR

Connection status server is not
authenticated.

Server not authen-
ticated

SERVER_AUTH_ERROR

Connection status server is
certification verification error.

Server certification
verification error

SERVER_CERT_ERROR

Connection status server is HT-
TP error.

Server error (HTTP)SERVER_HTTP_ERROR

Connection status proxy authen-
tication error is required.

Proxy Authentica-
tion Required

SERVER_PROXY_AUTH_ERROR

Connection status is request
error.

Request errorSERVER_REQUEST_ERROR

Connection status proxy connec-
tion error.

Proxy Connection
Error

SERVER_PROXY_CONN_ERROR

Continues on next page
80 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information
Continued

DescriptionValueCode

Connection status Gateway is
disabled.

CS Gateway dis-
abled

SERVER_GATEWAY_DISABLED

Connection status Gateway is
identifying.

Identifying CS
Gateway

SERVER_GATEWAY_WAITING

Connection status Gateway is
waiting for 3G connectivity.

Waiting 3G con-
nectivity

SERVER_GATEWAY_WAITING_3G

Connection status Gateway is
waiting for Wi-Fi connectivity.

Waiting Wi-Fi con-
nectivity

SERVER_GATEWAY_WAITING_WIFI

Connection status Gateway is
connected.

CS Gateway con-
nected

SERVER_GATEWAY_CONNECTED

Connection status Gateway
host name lookup in progress.

Host name lookup
in progress

SERVER_LOOKUP_IN_PROGRESS

Connection status Gateway is
waiting for Gateway IP.

Waiting for Gate-
way IP

WAITING_GATEWAY_IP

Connection status Gateway has
server DNS resolution failure.

DNS resolution
failed

SERVER_DNS_RESOLUTION_FAIL

Connection status Gateway
server ping is time out.

Gateway ping
timeout

SERVER_GW_PING_TIMEOUT

Connection status Gateway has
DNS that is not pingable.

DNS not pingableDNS_NOT_PINGABLE

Connection status Gateway
having authentication error.

Authentication errorAUTHN_ERROR

Connection status Gateway is
waiting to start after restart er-
ror.

Waiting to start
after restart error

RESTART_ERROR

CSE is displaying this message
when CSE is not enabled in
Public or Private network. By
default CSE is enabled on
Private network.

BlockedCS_BLOCKED

For more details, see the para-
meter External Firewall Enabled
in Technical reference manu-
al - System parameters.

Connection status Gateway is
waiting to start after reset error.

Waiting to start
after reset error

RESET_ERROR

Connection status Gateway is
in sleep mode.

CSE in configured
sleep mode

CSE_SLEEP_MODE

CSE registration status
The following table gives the information of CSE registration status:

DescriptionValueCode

Registration status is registered.RegisteredREG_REGISTERED

Registration status is in progress.Registration in progressREG_IN_PROGRESS

Registration status is registered with
code in MyRobot.

Registration with code in
MyRobot

REG_REGISTER

Registration status is disabled.Registration disabledREG_DISABLED

Registration status is failed.FailedREG_FAILED

Continues on next page
Application manual - Controller software OmniCore 81
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information

Continued

CSE mode
The following table gives the information of CSE mode:

DescriptionValueCode

Connected Services during initialization.Boot ModeCS_MODE_BOOT

Connected Services in registration mode.Registration ModeCS_MODE_REGISTRATION

Connected Services after registration is
successful.

Active ModeCS_MODE_ACTIVE

Connected Services during reset of connec-
ted services.

Reset ModeCS_MODE_RESET

When there is a delay to perform operation.Sleep ModeCS_MODE_SLEEP

When suspend connected services until
revoke.

Shutdown ModeCS_MODE_SHUTDOWN

Data collection status
The following table gives the information of data collection status:

DescriptionValueCode

Data collection status is none.NoneSPECIFIC_STATUS_NONE

Data collection status is
downloaded.

DownloadSPECIFIC_STATUS_DOWNLOADED

Data collection status down-
loaded failed.

Download FailedSPECIFIC_STATUS_DOWNLOAD_FAILED

Data collection status is star-
ted.

StartedSPECIFIC_STATUS_STARTED

Data collection status is
stopped.

StoppedSPECIFIC_STATUS_STOPPED

Data collection status is failed.FailedSPECIFIC_STATUS_FAILED

Description of behavior of events for server polling
The following table gives information about the behavior of events for server polling:

FastSlowEvents

10 min30 minCheck Registration

10 min30 minSend HardWare Information (before registra-
tion)
(Periodic polling is send only if there is any
change.)

24 h24 hSend HardWare Information (after registra-
tion)

50 min50 minSend Alive message

4 h8 hCheck for Module Update

4 h4 hSend Dynamic Information

1 min10 minInternal Pending Command

Restart watchdog (4 minutes)Restart after Unregistration

Continues on next page
82 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information
Continued

Connected Services event logs
The software agent generates event logs in the central controller event log. Event
logs are generated during starting, registering, unregistering, losing connectivity,
and during other key events.
The events logs are in the range of 170XXX and are described with all the other
controller event logs documentation. For more details, see Technical reference
manual - Event logs for RobotWare 7.

Force a reset of the software agent
It is possible to reset the software agent. When you reset, the software agent erases
all its internal information including the registration information, the data collector
script, and all the locally stored service information. The configuration will not be
reset, but a new registration is required to reactivate the connected services.
Use the following procedure to reset the software agent using FlexPendant:

1 Open Operate.
2 Tap Service Routines.
3 Tap Connected Services Reset.

The ConnectedServiceReset window is displayed.
4 Tap Yes.
5 Press the START hard button on the FlexPendant.

A confirmation page is displayed with operator messages.
6 Tap Reset.

The software agent is reset.

Application manual - Controller software OmniCore 83
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.9 Connected Services information

Continued

2.3.10 Troubleshooting

2.3.10.1 Server connectivity troubleshooting

Overview
From your location it is possible to verify the connectivity from the controller to the
Connected Services public connector server. This is done by connecting a PC
instead of the controller) with the same network configuration (WAN IP/Mask, DNS,
Route), and open the path to the root of the Connected Services server
(https://rseprod.abb.com in a browser. The connectivity is validated if the DNS
name has been resolved, the browser presents a page indicating the CS server,
and secured with an ABB certificate as shown in the following figures.

xx1500003225

Connected Services Gateway
For more details, see the section ABB Connected Services configuration in
Operating manual - Integrator's guide OmniCore.

Cybersecurity
For more details, see the section OmniCore Cybersecurity in Operating
manual - Integrator's guide OmniCore.

Time accuracy
It is important to set up the time correctly in the controllers including Time Zone,
either manually or with NTP. For more details, see the section Changing date and
time in Operating manual - OmniCore.

84 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.10.1 Server connectivity troubleshooting

https://rseprod.abb.com

2.3.10.2 3G / Wi-Fi Connectivity troubleshooting

Overview
This option is used to check the current connection state of the connectivity module
for troubleshooting.

Note

Connection log is available only for Connected Services Gateway 3G and Wi-Fi
(not for Wired).

Procedure
Use the following procedure to check the current connection state of the connectivity
module:

1 Open Settings.
2 Tap Backup & Recovery.
3 On the left sidebar tap Connection log.

The Connection log page is displayed and the logs are displayed on a
window.

Note

Tap on the refresh button to update the logs.

xx1900000976

4 Tap Export.
5 If required, in the File Name field edit the name of the file.
6 If required, to change the storage path, in the Folder Name field tap Browse

and select the required path.
7 Tap Create.

The current connection state of the connectivity module is saved in the
selected path.

Application manual - Controller software OmniCore 85
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.10.2 3G / Wi-Fi Connectivity troubleshooting

2.3.10.3 4G Connectivity troubleshooting

Overview
It is possible to get some status information and logs from the Connected Services
Gateway 4G. This is done by using an external PC connected on port Eth 1 of the
4G Gateway.
For more information about troubleshooting, see the product manual for the
controller, listed in References on page 11.

86 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.10.3 4G Connectivity troubleshooting

2.3.10.4 How to get Connected Services Embedded logs from the controller

Procedure
Use the following procedure to retrieve the CSE logs from the controller:

1 Open RobotStudio, click the Controller tab, and add the controller.

Note

For more details about adding the controller, see Operating
manual - RobotStudio.

2 In the Configuration group, click Properties and select Save diagnostics.
The Save As window is displayed.

3 Click Save.
The file is saved in the selected location.

4 Send the full diagnostic file to ABB support for further processing.

Application manual - Controller software OmniCore 87
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.10.4 How to get Connected Services Embedded logs from the controller

2.3.10.5 Connected Services Embedded troubleshooting logs

Connected Services Embedded troubleshooting logs and description
Connected Services Embedded (CSE) sends some log messages to Connectivity
Management Secure Server (CMSS). These log messages are categorized into
two types, periodic logs and non-periodic logs. Periodic logs contain CSE heath
status. Non-periodic logs are sent when CSE enters a particular state like registered,
Data collector started, and so on. These logs messages are helpful in
troubleshooting CSE. The logs are accessible from internal ABB Connected Services
support tool.

Connected Services Embedded base logs
The following table provides the list of Connected Services Embedded base logs
and its description:

DescriptionLog number
Log name

Controller received unsupported reset command from
external source.

3000
BASE_MODE_UNKNOWN

IRC5 Compatibility Data collector update has been
failed.

3170
BASE_MODE_FAIL_UPDATE

Connected Services Embedded (CSE) is successfully
registered with CMSS server.

8000
GLOBAL_INIT_OK

Connected Services Embedded (CSE) is unable to
start Data collector.

8033
INFO_JAVA_SPECIFIC_LOAD_NOK

Connected Services Embedded (CSE) received reset
command from external source.

8123
INFO_EXT_JAVARESET

Continues on next page
88 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.10.5 Connected Services Embedded troubleshooting logs

DescriptionLog number
Log name

Connected Services Embedded (CSE) sends keep-
alive messages to CMSS server at predefined intervals
(50 minutes) to indicate connected service is alive.
The alive message format is as below.

8210
INFO_STAY_ALIVE

Note

INFO_STAY_ALIVE is a periodic
log.

Example:
message_count Alive Bytes:xx/yy
HTTP:p/q/r/s/t/u/v
Mem:7069164 Run:746 RC:0 LHE:

• message_count: Current alive message count.
• Bytes: Number of bytes of memory sent and

received by controller.
• HTTP: Different http errors occurred while con-

troller communicating with CMSS server.
Type of errors:

- p: Connection error count.
- q: Connection not available error count.
- r: Authentication related error count.
- s: Request error count.
- t: Timeout error count.
- u: Proxy error count.
- v: Unknown error count.

• Mem: Free memory available in bytes.
• Run: Controller's uptime in seconds.
• RC: Number of times CSE restarted since the

last boot.
• LHE: Information about last http error.

Connected Services Embedded (CSE) will send keep
alive message once CSE registered. The message
format is same as 8210 INFO_STAY_ALIVE.

8213
INFO_ALIVE_STARTED

Connected Services Embedded (CSE) will send this
alive message when Connected Services Embedded
stopped. The message format is same as 8210
INFO_STAY_ALIVE.

8214
INFO_ALIVE_ENDED

Connected Services Embedded (CSE) module updated
successfully.

8700
INFO_MODULE_UPDATE_OK

Connected Services Embedded (CSE) module update
failed.

8701
INFO_MODULE_UPDATE_NOK

Connected Services Embedded (CSE) module update
is failed.

8702
INFO_MODULE_UPDATE_ERROR

Connected Services Embedded (CSE) data collector
module start.

8801
INFO_S24_STARTED

Connected Services Embedded (CSE) connect-
or(S2301) connector started.

8803
INFO_S2301_STARTED

Connected Services Embedded (CSE) data collector
stopped.

9003
INFO_SPECIFIC_STOP

Application manual - Controller software OmniCore 89
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.10.5 Connected Services Embedded troubleshooting logs

Continued

2.3.11 Network topology scenarios

Connection Type – Connected Services with 4G module
In the following scenario the Controller 1 and Controller 2 are installed and
configured with ABB SIM. Refer to Connection Settings table in the following figure
for detailed configuration. Based on this configuration Connected Services Gateway
4G module will connect to the network.
Connected Services is configured with ABB Connect Connection Type, which
means all the communication to the ABB Cloud will pass and be routed through
the Connected Services Gateway 4G module.

ABB Connected Services

Controller 2Controller 1

Network Switch

xx1900001182

Controller 2Controller 1 (NW1)4G connection settings for
controller 1 and 2

EnabledEnabledState

192.168.126.2192.168.126.2IP Address

255.255.255.0255.255.255.0Subnet mask

192.168.126.1192.168.126.1Default gateway

192.168.126.1192.168.126.1Preferred DNS

0.0.0.00.0.0.0Secondary DNS

Connected services settings

EnabledState

ABB ConnectConnection type

NoProxy used

Slow recommendedServer polling

1.0 IRC5 compatibilityConnected services mode

Continues on next page
90 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios

Connection Type – Connected Services with 3G module
In the following scenario the Controller 1 and Controller 2 are installed and
configured with ABB SIM. Refer to Connection Settings table in the following figure
for detailed configuration. Based on this configuration Connected Services Gateway
3G module will connect to the network.
Connected Services is configured with ABB Connect Connection Type, which
means all the communication to the ABB Cloud will pass and be routed through
the Connected Services Gateway 3G module.

ABB Connected Services

Controller 2Controller 1

Network Switch

xx1900001182

3G connection settings for controller 1 and 2

EnabledState

abbrobotics.comAPN (Access point)

AutomaticOperator

AutomaticBand

AutomaticAuth

EnabledRoaming

0Idle

0Delay

Connected services settings

EnabledState

ABB ConnectConnection type

NoProxy used

Slow or FastServer polling

1.0 IRC5 compatibilityConnected services mode

Continues on next page
Application manual - Controller software OmniCore 91
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios

Continued

Connection Type – Connected Services with Wi-Fi module
In the following scenario the Controller 1 and Controller 2 are connected with
Connected Services Gateway Wi-Fi module. The Wi-Fi modules can be configured
to connect with any of the available Wi-Fi access points. These access points must
be enabled with internet access to reach ABB Cloud.
Refer to Connected Services Settings table in the following figure for detailed
configuration. Based on this configuration Connected Services Gateway Wi-Fi
module will connect to the internet enabled Wi-Fi network and reaches the ABB
Cloud.
Connected Services is configured with ABB Connect Connection Type, which
means all the communication to the ABB Cloud will pass and be routed through
the Connected Services Gateway Wi-Fi module.

Controller 2Controller 1

Wi-Fi AP

Internet Gateway

ABB Connected Services

Network Switch

xx1900001183

Wi-Fi connection settings for controller 1 and 2

EnabledState

SSID-123SSID

1234567890Key

AutomaticSecurity

Connected services settings

EnabledState

ABB ConnectConnection type

Yes or NoProxy used

Fast or SlowServer polling

1.0 IRC5 compatibilityConnected services mode

Continues on next page
92 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios
Continued

Connection Type – Connected Services with Wired module
In the following scenario the Controller 1 and Controller 2 are connected with
Connected Services Gateway Wired module. Since it is a wired module it requires
a wired connection with internet access to reach ABB Cloud. Controller 1 and 2
are also connected to public network which could be a factory network.
Wired module always should be configured with static IP. Refer to the Connected
Services Gateway Wired settings table for a simple network configuration.
Connected Services is configured with the ABB Connect Connection Type, which
means all the communication to the ABB Cloud will pass and be routed through
the Connected Services Gateway Wired module and not on the public network.

Controller 2Controller 1

ABB Connected Services

Internet Gateway

Network Switch

DHCP server DNS server User PC

Public Network

CS Gateway Wired Network with Internet Connection

xx1900001184

Controller 2Controller 1 (NW1)Wired connection settings

EnabledEnabledState

192.168.200.21192.168.200.20IP Address

255.255.255.0255.255.255.0Subnet mask

192.168.200.1192.168.200.1Default gateway

192.168.200.1192.168.200.1Preferred DNS

0.0.0.00.0.0.0Secondary DNS

User PCDNS serverDHCP serv-
er

Internet
Gateway

Controller 2Controller 1

172.16.16.110172.16.16.2172.16.16.3192.168.200.1172.16.16.101172.16.16.100IP Address

255.255.255.0255.255.255.0255.255.255.0255.255.255.0255.255.255.0255.255.255.0Subnet
mask

172.16.16.1172.16.16.1172.16.16.1172.16.16.1172.16.16.1Default
gateway

Continues on next page
Application manual - Controller software OmniCore 93
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios

Continued

Connected services settings

EnabledState

ABB ConnectConnection type

NoProxy used

FastServer polling

1.0 IRC5 compatibilityConnected services mode

Continues on next page
94 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios
Continued

Connection Type – Public
If the factory network is enabled with internet access and firewalled, then the same
network which is connected to the public port of the controller can be used to
configure Connected Services.
In the following scenario the Controller 1 and Controller 2 are connected to public
network by using public port of the controller which is the factory network enabled
with internet. As a good practice the factory network must be firewalled for any
unwanted inbound and outbound accesses if connected to internet.
Connected Services with Public Connection Type is configured with the Connected
Services Settings in the following way:

Firewall

Public Network

DNS ServerDHCP Server

OmniCore

Controller 1

OmniCore

Controller 2

Network switch

Internet

Gateway

ABB Connected Services

xx2300000120

DNS serverDHCP serverInternet Gate-
way

Controller 2Controller 1

172.16.16.2172.16.16.3172.16.16.1172.16.16.102172.16.16.100IP Address

255.255.255.0255.255.255.0255.255.255.0255.255.255.0255.255.255.0Subnet mask

172.16.16.1172.16.16.1172.16.16.1172.16.16.1Default gate-
way

172.16.16.2172.16.16.2172.16.16.2DNS

Connected services settings

EnabledState

PublicConnection type

NoProxy used

FastServer polling

1.0 IRC5 compatibilityConnected services mode

Note

Ensure that there is a Firewall setup on customer network for internet access
(outbound only). This needs to be confirmed also in the Omnicore Firewall
settings.

Continues on next page
Application manual - Controller software OmniCore 95
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios

Continued

Connection Type – Public - With customer storage enabled
The following figure shows the scenario of using the customer storage to store
controller data. Customer storage could be a controller local disk, mapped network
disk (on ftp/sftp or nfs server) disk. In the following scenario we have used an
ftp/sftp server as a customer storage in the factory network. This ftp/sftp
server can be mounted as a local disk on the controller. So, during the Connected
Services configuration the disk path should be mentioned as the mounted ftp/sftp
disk. The disk path is ftp/sftp for mounted ftp/sftp disk and pc: for mounted
network disk on the controller.
Connected Services with Public Connection Type is configured with the Connected
Services Settings in the following way:

Firewall

Public Network

FTP Server

DNS Server

DHCP Server

OmniCore

Controller 1

OmniCore

Controller 2

Network switch

Internet

Gateway

ABB Connected Services

xx2300000122

FTP serverDNS serverDHCP serv-
er

Internet
Gateway

Controller 2Controller 1

172.16.16.4172.16.16.2172.16.16.3172.16.16.1172.16.16.102172.16.16.100IP Address

255.255.255.0255.255.255.0Subnet
mask

172.16.16.1172.16.16.1Default
gateway

172.16.16.2172.16.16.2DNS

Connected services settings

EnabledState

PublicConnection type

NoProxy used

FastServer polling

2.0 OmniCore [Preview]Connected services mode
1.0 IRC5 compatibility

DiskCustomer storage

Continues on next page
96 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios
Continued

Connected services settings

ftp/Disk path

Connected Services using ABB Gateway Service box

Overview
This section explains how Connected Services is configured using an external
Internet gateway (3G/4G, Wi-Fi, and so on) not defined as default gateway in the
controller. In this case connected services should be configured with the connection
type custom.
The gateway service box can be connected on customer WAN port, management
port, or Connected Services Gateway wired port.

Controller with DHCP
Use the following procedure to configure the Connected Services from the
FlexPendant when there is controller with DHCP.

1 Open Settings.
2 Tap ABB Connected Services.
3 Tap Connected Services on the left pane.

The configuration parameters for connected services is displayed.
4 In the Connection Type list, tap and select Custom.
5 In the Internet Gateway IP field, type the IP address of internet gateway.
6 In the Internet DNS IP field, type the IP address of internet DNS.
7 Tap Apply.

The Restart confirmation message is displayed.
8 Click OK.

The controller is restarted.
The connected services start communicating to the server based on the
configuration.
Check the connectivity status in the event logs. For more details, see
Connected Services information on page 74.

Gateway box on customer network
When gateway box is configured for multiple controllers, then the LAN IP of the
gateway box must change according to the WAN IP network segment.
The gateway box should be connected to the customer network. And, the LAN IP
should be modified to match with the customer network IP segment.

Continues on next page
Application manual - Controller software OmniCore 97
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios

Continued

The following figure and table show a typical network infrastructure:

DHCP Server
172.16.16.3

DNS Server
172.16.16.1

Controller 1

Customer WAN Network

Controller 2 Controller 3

Connected Services 3G
Gateway Box

xx1800002942

Controller 3Controller 2Controller 1DHCP configuration

172.16.16.60172.16.16.59172.16.16.58IP

255.255.255.0255.255.255.0255.255.255.0Mask

YesYesYesCSE Enabled

CustomCustomCustomConnection type

172.16.16.25172.16.16.25172.16.16.25Internet Gateway IP

172.16.16.25172.16.16.25172.16.16.25Internet DNS IP

For more information about how to do setting for the gateway box for multiple
controllers, see Product manual - Connected Services.

Note

The network infrastructure is an example to demonstrate the network topology.

CAUTION

Ensure you always have Internet access with firewall.

Note

Using the ABB Service Box will allow Remote Access features. A standard 4G
router can also be used with same principles.

Continues on next page
98 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios
Continued

Connected Services using customer Gateway

Overview
This section explains how Connected Services is configured using an external
Internet gateway (provided by the customer) not defined as default gateway in the
controller. In this case connected services should be configured with the connection
type custom.
The gateway service box can be connected on customer WAN port, management
port, or Connected Services Gateway wired port.

Controller with DHCP
Use the following procedure to configure the Connected Services from the
FlexPendant when there is controller with DHCP.

1 Open Settings.
2 Tap ABB Connected Services.
3 Tap Connected Services on the left pane.

The configuration parameters for connected services is displayed.
4 In the Connection Type list, tap and select Custom.
5 In the Internet Gateway IP field, type the IP address of internet gateway.
6 In the Internet DNS IP field, type the IP address of internet DNS.
7 Tap Apply.

The Restart confirmation message is displayed.
8 Click OK.

The controller is restarted.
The connected services start communicating to the server based on the
configuration.
Check the connectivity status in the event logs. For more details, see
Connected Services information on page 74.

Gateway box on customer network
When gateway box is configured for multiple controllers, then the LAN IP of the
gateway box must change according to the WAN IP network segment.
The gateway box should be connected to the customer network. And, the LAN IP
should be modified to match with the customer network IP segment.

Continues on next page
Application manual - Controller software OmniCore 99
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios

Continued

The following figure and table show a typical network infrastructure:

DHCP Server
172.16.16.3

DNS Server
172.16.16.1

Controller 1

Customer WAN Network

Controller 2 Controller 3

Customer Internet
Gateway Firewall

xx2300001231

Controller 3Controller 2Controller 1DHCP configuration

172.16.16.60172.16.16.59172.16.16.58IP

255.255.255.0255.255.255.0255.255.255.0Mask

YesYesYesCSE Enabled

CustomCustomCustomConnection type

172.16.16.25172.16.16.25172.16.16.25Internet Gateway IP

172.16.16.25172.16.16.25172.16.16.25Internet DNS IP

Note

The network infrastructure is an example to demonstrate the network topology.

CAUTION

Ensure you always have Internet access with firewall.

Note

It is possible to use an ABB Service Box which will also allow Remote Access
features. A standard 4G router can also be used with same principles.

Note

When you use an internet gateway make sure it is firewalled to allow only
minimum required outbound commands.

100 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.3.11 Network topology scenarios
Continued

2.4 Cyclic bool

2.4.1 Cyclically evaluated logical conditions

Purpose
The purpose of cyclically evaluated logical conditions, Cyclic bool, is to allow a
RAPID programmer to connect a logical condition to a persistent boolean variable.
The logical condition will be evaluated every 12 ms and the result will be written
to the connected variable.

What is included
The RobotWare base functionality Cyclic bool includes:

• instructions for setting up Cyclic bool: SetupCyclicBool,
RemoveCyclicBool, RemoveAllCyclicBool

• functions for retrieving the status of Cyclic bool:
GetMaxNumberOfCyclicBool, GetNextCyclicBool,
GetNumberOfCyclicBool.

Basic approach
This is the general approach for using Cyclic bool. For more detailed examples of
how this is done, see Cyclic bool examples on page 104.

1 Declare a persistent boolean variable, for example:
PERS bool cyclicbool1;

2 Connect a logical condition to the variable, for example:
SetupCyclicBool cyclicbool1, doSafetyIsOk = 1;

3 Use the variable when programming, for example:
WHILE cyclicbool1 = 1 DO

! Do what’s only allowed when all safety is ok

...

ENDWHILE

4 Remove connection when no longer useful, for example:
RemoveCyclicBool cyclicbool1;

Restart and reset behavior
The table below describes the functionality of Cyclic bool when the program pointer
is moved or when the controller is restarted.

DescriptionAction

The behavior when the program pointer is set to main is configur-
able, see Configuration on page 102.

Program pointer to
main

This will have no effect.Restart or power fail
All connected Cyclic bool conditions will remain and the evaluation
will be restarted immediately.

This will remove all connected Cyclic bool conditions.Reset RAPID

Reset system

Continues on next page
Application manual - Controller software OmniCore 101
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.1 Cyclically evaluated logical conditions

Configuration
The following behavior of the Cyclic bool functionality can be configured:

DescriptionParameter

It is possible to configure if the cyclically evaluated logical conditions
shall be removed or not when setting the program pointer to main.

• On - remove.
• Off - do not remove (default behavior).

RemoveAtPpToMain

It is possible to configure which error mode to use when the evalu-
ation of a Cyclic bool fails.

• SysStopError i - stop RAPID execution and produce an error
log (default behavior).

• Warning - produce a warning log.
• None - do nothing.

ErrorMode

It is possible to configure if a failing Cyclic bool shall be recovered
or not.

• On - try to recover the evaluation of a failing Cyclic bool (de-
fault behavior).

• Off - do not try to recover the evaluation of a Cyclic bool.

RecoveryMode

i Error mode SysStopError can only be combined with RecoveryMode - "On".
For more information, see System parameters on page 107.

Syntax

SetupCyclicBool Flag Cond [\Signal]

Flag shall be of:
• Data type: bool

- Object type: PERS or TASK PERS
Cond shall be a bool expression that may consist of:

• Data types: num, dnum and bool

- Object type: PERS, TASK PERS, or CONST
• Data types: signaldi, signaldo or physical di and do

- Object type: VAR
• Operands: 'NOT', 'AND', 'OR', 'XOR', '=', '(', ')'

\Signal shall be of:
• Object type: signaldo

RemoveCyclicBool Flag

Flag shall be of:
• Data type: bool

- Object type: PERS or TASK PERS

Limitations
• Records and arrays are not allowed in the logical condition.
• A maximum of 60 conditions can be connected at the same time.

Continues on next page
102 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.1 Cyclically evaluated logical conditions
Continued

• Any PERS num or dnum, CONST num or dnum or literal num or dnum used in a
condition must be of integer type. If using any decimal value this will cause
a fatal error.

Application manual - Controller software OmniCore 103
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.1 Cyclically evaluated logical conditions

Continued

2.4.2 Cyclic bool examples

Using digital input and output signals
! Wait until all signals are set

PERS bool cyclicbool1 := FALSE;

PROC main()

SetupCyclicBool cyclicbool1, di1=1 AND do2=1;

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Using bool variables
! Wait until all flags are TRUE

PERS bool cyclicbool1 := FALSE;

TASK PERS bool flag1 := FALSE;

PERS bool flag2 := FALSE;

PROC main()

SetupCyclicBool cyclicbool1, flag1=TRUE AND flag2=TRUE;

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Using num and dnum variables
! Wait until all conditions are met

PERS bool cyclicbool1 := FALSE;

PERS bool cyclicbool2 := FALSE;

PERS num num1 := 0;

PERS dnum1 := 0;

PROC main()

SetupCyclicBool cyclicbool1, num1=7 OR dnum1=10000000;

SetupCyclicBool cyclicbool2, num1=8 OR dnum1=11000000;

WaitUntil cyclicbool1=TRUE;

...

WaitUntil cyclicbool2=TRUE;

...

! Remove all connections when no longer in use

RemoveAllCyclicBool;

ENDPROC

Continues on next page
104 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.2 Cyclic bool examples

Using alias variables
! Wait until all conditions are met

ALIAS bool aliasBool;

ALIAS num aliasNum;

ALIAS dnum aliasDnum;

PERS bool cyclicbool1 := FALSE;

PERS aliasBool flag1 := FALSE;

PERS aliasNum num1 := 0;

PERS aliasDnum dnum1 := 0;

PROC main()

SetupCyclicBool cyclicbool1, flag1=TRUE AND (num1=7 OR
dnum1=10000000);

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Using user defined constants for comparison
! Wait until all conditions are met

PERS bool cyclicbool1;

PERS bool flag1 := FALSE;

PERS num num1 := 0;

PERS dnum dnum1 := 0;

CONST bool MYTRUE := TRUE;

CONST num NUMLIMIT := 10;

CONST dnum DNUMLIMIT := 10000000;

PROC main()

SetupCyclicBool cyclicbool1, flag1=MYTRUE AND num1=NUMLIMIT AND
dnum1=DNUMLIMIT;

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Continues on next page
Application manual - Controller software OmniCore 105
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.2 Cyclic bool examples

Continued

Handing over arguments by reference
If the instruction SetupCyclicBool is used inside a called procedure, it is possible
to hand over conditions as arguments to that procedure.
Using conditions passed by reference works only for SetupCyclicBool. Conditions
passed by reference has the same restrictions as conditions for SetupCyclicBool.
This functionality works regardless if the modules are Nostepin or has any other
module attributes.

MODULE MainModule

CONST robtarget p10 := [[600,500,225.3], [1,0,0,0], [1,1,0,0],
[11,12.3,9E9,9E9,9E9,9E9]];

PERS bool m1;

PERS bool Flag2 := FALSE;

PROC main()

! The Expression (di_1 = 1) OR Flag2 = TRUE shall be

! used by SetupCyclicBool

my_routine (di_1 = 1) OR Flag2 = TRUE;

ENDPROC

PROC my_routine(bool X)

! It is possible to pass arguments between several procedures

MySetCyclicBool X;

ENDPROC

PROC MySetCyclicBool (bool Y)

RemoveCyclicBool m1;

! Only SetupCyclicBool can pass arguments

SetupCyclicBool m1, Y;

! If conditions passed by reference shall be used by any other

! instruction, the condition must be setup with SetupCyclicBool

! before it can be used.

WaitUntil m1;

MoveL p10, v1000, z30, tool2;

ENDPROC

ENDMODULE

106 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.2 Cyclic bool examples
Continued

2.4.3 System parameters

About the system parameters
This is a brief description of the system parameters used by Cyclic bool. For more
information about the parameters, see Technical reference manual - System
parameters.

Type Cyclic bool settings
The system parameters used by Cyclic bool belong to the type Cyclic bool settings
in topic Controller.

DescriptionParameter

There can be only one instance of each allowed value, that
is a maximum of three instances in the system. All three in-
stances will be installed in the system (default) and cannot
be removed.

• RemoveAtPpToMain
• ErrorMode
• RecoveryMode

Name

The action value RemoveAtPpToMain is used to configure
if a connected Cyclic bool shall be removed or not when
setting the program pointer to Main.

RemoveAtPpToMain

The action value ErrorMode is used to configure which error
mode to use when evaluation fails.

ErrorMode

The action value RecoveryMode is used to configure which
recovery mode to use when evaluation fails.

RecoveryMode

Application manual - Controller software OmniCore 107
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.3 System parameters

2.4.4 RAPID components

About the RAPID components
This is an overview of all RAPID instructions, functions, and data types in Cyclic
bool.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types

Instructions

DescriptionInstruction

SetupCyclicBool connects a logical condition to a boolean
variable.

SetupCyclicBool

RemoveCyclicBool removes a specific connected logical con-
dition.

RemoveCyclicBool

RemoveAllCyclicBool removes all connected logical condi-
tions.

RemoveAllCyclicBool

Functions

DescriptionFunction

GetMaxNumberOfCyclicBool retrieves the maximum
number of cyclically evaluated logical condition that can
be connected at the same time.

GetMaxNumberOfCyclicBool

GetNextCyclicBool retrieves the name of a connected
cyclically evaluated logical condition.

GetNextCyclicBool

GetNumberOfCyclicBool retrieves the number of a
connected cyclically evaluated logical condition.

GetNumberOfCyclicBool

IsCyclicBool is used to test if a persistent boolean is
a Cyclic bool or not, i.e. if a logical condition has been
connected to the persistent boolean variable with the
instruction SetupCyclicBool.

IsCyclicBool

Data types
Cyclic bool includes no data types.

108 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.4.4 RAPID components

2.5 Device Command Interface

2.5.1 Introduction to Device Command Interface

Purpose
Device Command Interface provides an interface to communicate with I/O devices
on industrial networks.
This interface is used together with raw data communication, see Raw data
communication on page 136.

What is included
The RobotWare base functionality Device Command Interface gives you access
to:

• Instruction used to create a DeviceNet header.

Basic approach
This is the general approach for using Device Command Interface. For a more
detailed example of how this is done, seeWrite rawbytes to DeviceNet on page111.

1 Add a DeviceNet header to a rawbytes variable.
2 Add the data to the rawbytes variable.
3 Write the rawbytes variable to the DeviceNet I/O.
4 Read data from the DeviceNet I/O to a rawbytes variable.
5 Extract the data from the rawbytes variable.

Limitations
Device command communication require the option for the industrial network in
question.
Device Command Interface is supported by the following type of industrial networks:

• DeviceNet
• EtherNet/IP

Application manual - Controller software OmniCore 109
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.5.1 Introduction to Device Command Interface

2.5.2 RAPID components and system parameters

Data types
There are no RAPID data types for Device Command Interface.

Instructions
This is a brief description of each instruction in Device Command Interface. For
more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

PackDNHeader adds a DeviceNet header to a rawbytes variable. The
header specifies a service to be done (e.g. set or get) and a parameter
on a DeviceNet I/O device.

PackDNHeader

Functions
There are no RAPID functions for Device Command Interface.

System parameters
There are no specific system parameters in Device Command Interface. For
information on system parameters in general, see Technical reference
manual - System parameters.

110 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.5.2 RAPID components and system parameters

2.5.3 Code example

Write rawbytes to DeviceNet
In this example, data packed as a rawbytes variable is written to a DeviceNet I/O
device. For more details regarding rawbytes, see Raw data communication on
page 136.

PROC set_filter_value()

VAR iodev dev;

VAR rawbytes rawdata_out;

VAR rawbytes rawdata_in;

VAR num input_int;

VAR byte return_status;

VAR byte return_info;

VAR byte return_errcode;

VAR byte return_errcode2;

! Empty contents of rawdata_out and rawdata_in

ClearRawBytes rawdata_out;

ClearRawBytes rawdata_in;

! Add DeviceNet header to rawdata_out with service

! "SET_ATTRIBUTE_SINGLE" and path to filter attribute on

! DeviceNet I/O device

PackDNHeader "10", "6,20 1D 24 01 30 64,8,1", rawdata_out;

! Add filter value to send to DeviceNet I/O device

input_int:= 5;

PackRawBytes input_int, rawdata_out,(RawBytesLen(rawdata_out) +
1) \IntX := USINT;

! Open I/O device

Open "/FCI1:" \File:="board328", dev \Bin;

! Write the contents of rawdata_out to the I/O device

WriteRawBytes dev, rawdata_out \NoOfBytes :=
RawBytesLen(rawdata_out);

! Read the answer from the I/O device

ReadRawBytes dev, rawdata_in;

! Close the I/O device

Close dev;

! Unpack rawdata_in to the variable return_status

UnpackRawBytes rawdata_in, 1, return_status \Hex1;

IF return_status = 144 THEN

TPWrite "Status OK from device. Status code:
"\Num:=return_status;

Continues on next page
Application manual - Controller software OmniCore 111
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.5.3 Code example

ELSE

! Unpack error codes from device answer

UnpackRawBytes rawdata_in, 2, return_errcode \Hex1;

UnpackRawBytes rawdata_in, 3, return_errcode2 \Hex1;

TPWrite "Error code from device: " \Num:=return_errcode;

TPWrite "Additional error code from device: "
\Num:=return_errcode2;

ENDIF

ENDPROC

112 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.5.3 Code example
Continued

2.6 Electronically Linked Motors

2.6.1 Overview

Description
Electronically Linked Motors makes a master/follower configuration of motors (for
example two additional axes). The follower axis will continuously follow the master
axis in terms of position, velocity, and acceleration.
For stiff mechanical connection between the master and followers, the torque
follower function can be used. Instead of regulating to exactly the same position
for the master and follower, the follower axis will get its torque reference as a quota
of the torque of the master axis. A small position error between master and follower
will occur depending on backlash and mechanical misalignment.

Purpose
The primary purpose of Electronically Linked Motors is to replace driving shafts
of gantry machines, but the base functionality can be used to control any other set
of motors as well.

What is included
The RobotWare base functionality Electronically Linked Motors gives you access
to:

• a service routine for defining linked motor groups and trimming the axis
positions

• system parameters used to configure a follower axis

Basic approach
This is the general approach for setting up Electronically Linked Motors. For a
more detailed description of how this is done, see the respective section.

1 Configure the additional axes as a mechanical unit. See Application
manual - Additional axes.

2 Configure tolerance limits in the system parameters, in the types Linked M
Process, Process, and Joint.

3 Restart the controller for the changes to take effect.
4 Set values to data variables, defining the linked motor group and connecting

follower and master axes.
5 Use the service routine to trim positions or reset follower after position error.

Limitations
There can be up to 5 follower axes. The follower axes can be configured to follow
one master each, or several followers can follow one master, but the total number
of follower axes cannot be more than 5.
The follower axis cannot be an ABB robot (IRB robot). The master axis can be
either an additional axis or a robot axis.

Continues on next page
Application manual - Controller software OmniCore 113
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.1 Overview

The RAPID instruction IndReset (Independent Reset) cannot be used in
combination with Electronically Linked Motors.

114 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.1 Overview
Continued

2.6.2 Configuration

2.6.2.1 System parameters

About the system parameters
This is a brief description of each parameter used for the option Electronically
Linked Motors. For more information, see the respective parameter in Technical
reference manual - System parameters.

Joint
These parameters belong to the topic Motion and the type Joint.

DescriptionParameter

Specifies which master axis this axis shall follow. Refers to the parameter
Name in the type Joint. Robot axes are referred to as rob1 followed by
underscore and the axis number (for example rob1_6).

Follower to Joint

Id name of the process that is called. Refers to the parameter Name in
the type Process.

Use Process

A flag that locks the axis so it is not used in the path interpolation.Lock Joint in Ipol
This parameter must be set to TRUE when the axis is electronically linked
to another axis.

Process
These parameters belong to the topic Motion and the type Process.

DescriptionParameter

Id name of the process.Name

Id name of electronically linked motor process. Refers to the parameter
Name in the type Linked M Process.

Use Linked Motor
Process

Linked M Process
These parameters belong to the topic Motion and the type Linked M Process.

DescriptionParameter

Id name for the linked motor process.Name

Time delay from control on until the follower starts to follow the
master.

Offset Adjust Delay
Time

This can be used to give the master time to stabilize before the
follower starts following.

The maximum allowed difference in distance (in radians or meters)
between master and follower.

Max Follower Offset

If Max Follower Offset is exceeded, emergency stop is activated.

The maximum allowed difference in speed (in rad/s or m/s) between
master and follower.

Max Offset Speed

If Max Offset Speed is exceeded, emergency stop is activated.

Defines how large part of the Max Offset Speed that can be used
to compensate for position error.

Offset Speed Ratio

Continues on next page
Application manual - Controller software OmniCore 115
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.2.1 System parameters

DescriptionParameter

Time for acceleration up to Max Offset Speed.Ramp Time
The proportion constant for position regulation is ramped from zero
up to its final value (Master Follower kp) during Ramp Time.

The proportion constant for position regulation. Determines how
fast the position error is compensated.

Master Follower kp

Set to True if the follower and master should share torque instead
of regulating on exact position.

Torque follower

The follower axis will get its torque reference according to the
master axis torque multiplied with the quota.

Torque quota

If motors and gears are identical, it is recommend to set this value
a bit lower than 1, for example, 0.95.

116 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.2.1 System parameters
Continued

2.6.2.2 Configuration example

About this example
This is an example of how to configure the additional axis M8DM1 to be a follower
to the axis M7DM1 and axis M9DM1 to be a follower to robot axis 6.

Joint

Lock Joint in IpolUse ProcessFollower to JointName

M7DM1

TrueELM_1M7DM1M8DM1

TrueELM_2rob1_6M9DM1

Process

Use Linked Motor ProcessName

Linked_m_1ELM_1

Linked_m_2ELM_2

Linked M Process

Master Fol-
lower kp

Ramp
Time

Offset
Speed Ra-
tio

MaxOffset
Speed

Max Follow-
er Offset

Offset Adjust
Delay Time

Name

0.0510.330.050.050.2Linked_m_1

0.081.50.40.10.10.1Linked_m_2

Application manual - Controller software OmniCore 117
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.2.2 Configuration example

2.6.3 Managing a follower axis

2.6.3.1 Using the service routine for a follower axis

About the service routine
When the follower axis is configured as a mechanical unit and connected to a
master axis, the service routine can be used to:

• calibrate the follower axis
• reset follower after a position error
• tune a torque follower axis, see Tuning a torque follower on page 123.

Copy service routine file to HOME
Copy the file linked_m.sys from the folder .../RobotControl_7.xxx/utility/, to the
HOME folder of the robot system.

Load cfg files
Load the configuration files LINKED_M_MMC.cfg and LINKED_M_SYS.cfg. These
are located in the directory:
...\utility\LinkedMotors.
Loading configuration files can be done with RobotStudio. How to do this is
described in:

Description of loading cfg filesTool

Section Loading a configuration file in Operating manual - RobotStudio.RobotStudio

Restart the controller after loading the configuration files.

Data variables
When the service routine starts, it will read values from system parameters and
set the values for a set of data variables used by the service routine. These variables
only need to be set manually if something goes wrong, seeData setup on page127.

Start service routine

Note

The controller must be in manual or auto mode to run this service routine.

ActionStep

On the start screen, tapOperate, and then select Service Routines from the menu.1

Select Linked_m and tap Go to.2
If Linked_m is not listed, browse to the folder where you placed it.

Press and hold the enabling device.3

Press the RUN button to start the service routine.4

Tap Menu 1.
The follower axes that are set up in the system are shown in the task bar.

5

Continues on next page
118 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.1 Using the service routine for a follower axis

ActionStep

Tap the follower axis you want to use the service routine for.
The main menu of the service program is now shown.

6

Menu buttons

DescriptionButton

Automatically moves the follower axis to the position corresponding to the
master axis, see Reset follower automatically on page 122.

AUTO

Stops the movement of the follower axis. Can be used when jogging or using
AUTO and the movement must be stopped immediately.

STOP

Manual stepwise movement of the follower axis, see Jog follower axis on page120.JOG
If the follower axis is synchronized with the master axis, it will resume its position
when you tap AUTO or when you exit the service program.

Used to suspend the synchronization between follower axis and master axis,
see Unsynchronize on page 120.

UNSYNC

Show some help for how to use the service program. The button Next shows
the next help subject.

HELP

Application manual - Controller software OmniCore 119
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.1 Using the service routine for a follower axis

Continued

2.6.3.2 Calibrate follower axis position

Overview
Before the follower axis can follow the master axis, you must define the calibration
positions for both master and follower.

Master axis

calibrate position

Desired

follower

position

Follower

position

en0400000963

This calibration is done by following the procedures below:
1 Jog the master axis to its calibration position.
2 Unsynchronize the follower and master axes. SeeUnsynchronize on page120.
3 Jog the follower to the desired position. See Jog follower axis on page 120.
4 Fine calibrate follower axis. See Fine calibrate on page 121.

Unsynchronize

ActionStep

In the main menu of the service routine, tap UNSYNC.1

Confirm that you want to unsynchronize the axes by tapping YES.2

Restart the controller when an information text tells you to do it.
After the restart the follower axis is no longer synchronized with the master axis.

3

Jog follower axis

ActionStep

In the main menu of the service program, tap JOG.1

Select the speed with which the follower axis should move when you jog it.2

Select the step size with which the follower axis should move for each step you
jog it.

3

Tap on Positive or Negative, depending on in which direction you want to move
the follower axis.

4

Jog the follower axis until it is exactly in the calibration position (the position that
corresponds to the master axis calibration position).

Continues on next page
120 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.2 Calibrate follower axis position

Fine calibrate

ActionStep

Open the Calibrate app.1

Select the mechanical unit that the follower axis belongs to.2

Tap the button Calib. Parameters.3

Tap Fine Calibration....4

In the warning dialog that appears, tap Yes.5

Select the axis that is used as follower axis and tap Calibrate.6

In the warning dialog that appears, tap Calibrate.
The follower axis is now calibrated. As soon as the follower is calibrated, it is also
synchronized with the master again.

7

Application manual - Controller software OmniCore 121
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.2 Calibrate follower axis position

Continued

2.6.3.3 Reset follower axis

Overview
If the follower offset exceeds its tolerance limits (configured with the system
parameter Max follower offset), the service routine must be used to move the
follower back within the tolerance limits. This can be done automatically in the
service routine if the follower is within the AUTO range. Otherwise the follower
must be manually jogged.
The range where AUTO can be used is determined by the system parameter Max
Follower Offset multiplied with the data variable offset_ratio.

Master axis

position

Desired

follower

position

Range where follower

automatically follow master

Range where AUTO in service program can be used

Max Follower

 Offset

Max Follower Offset * offset_ratio

en0400000962

Reset follower automatically

ActionStep

In the main menu of the service routine, tap AUTO.1

Select the speed with which the follower axis should move to its desired position.2

Reset follower by manual jogging

ActionStep

In the main menu of the service routine, tap JOG.1

Select the speed with which the follower axis should move when you jog it.2

Select the step size with which the follower axis should move for each step you
jog it.

3

Tap on Positive or Negative, depending on which direction you want to move the
follower axis.

4

Jog the follower until it is within the tolerance of Max Follower Offset (or use AUTO
when you are close enough).

122 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.3 Reset follower axis

2.6.4 Tuning a torque follower

2.6.4.1 Description of torque follower

About torque follower
The follower axis can be set up so that it gets its torque reference directly from the
master axis.
The following simplified graphics shows the control loop for both master and
follower axis.

Master axis

xx2300001589

Follower axis

xx2300001590

Description
The follower axis gets its torque feedforward according to a quota of torque ref on
the master axis.
When the follower axis is set as torque follower, the control parameters position
control gain (K) and speed loop integral part (Kv/Ti) is internally set to zero. It is
recommended to run the follower axis with a small value of Kv and FFW mode =
Spd.

Continues on next page
Application manual - Controller software OmniCore 123
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.1 Description of torque follower

Torque quota
The sharing of torque is done so that the follower axis receives its torque reference
as the master reference multiplied with the torque quota. The setup is done with
equal motors and gears quota, and the ideal would be 1.0, but for stability reasons
it is recommended to set it to a value below that, for example, 0.95.
If motor and gearbox differs between master and follower, manual calculation is
required to achieve good sharing and stability.
The torque quota is configured with the system parameter Torque quota, see
Technical reference manual - System parameters, topic Motion, type Linked M
Process.

Example of torque follower configuration
An example of a torque follower configuration (part of MOC.cfg):

LINKED_M_PROCESS:

-name "TorqueFollower" -offset_adj_delay_time 0.1 -max_offset
50\

-max_offset_speed 1 -offset_speed_ratio 0.3 -ramp_time 0.1\

-kp_offset 0.2 -torque_follower -torque_distribution 0.9

LCM0:

-name "MasterAxis" -Kp 10 -Kv 0.15 -Ti 0.2 -ffw_mode 1

-name " TorqueFollower " -Kp 10 -Kv 0.05 -Ti 0.2 -ffw_mode 1

When enabling torque_follower, the parameters marked with bold font in the
example, are no longer used. max_offset is still valid but should be increased.
Normally the follower axis should use a smaller value of Kv, but it is recommend
to still have some natural damping.

Note

It is highly recommended to use same type of motor and gearbox for the master
and follower.
When the torque follower is used with different motor types or gearboxes, the
quota must be set accordingly. The quota is shared on motor torque and does
not consider gear ratio.

124 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.1 Description of torque follower
Continued

2.6.4.2 Using the service routine to tune a torque follower

About the service routine for torque follower
The service routine Linked_M can be used to find suitable values of some
parameters for torque follower configuration. When the values are found, the system
parameters are updated and a new fine calibration is done. After that, there is no
need for any tuning of the torque follower.

Opening the tune torque follower menu

IllustrationAction

Start the service routine (as described
by the first steps in Start service routine
on page 118).

1

Tap Menu 2.2

Tap on the name of the follower axis to
tune.

3

Use the tune torque follower menu as
described below.

4

Tuning the torque quota
Use this procedure to change the torque quote for the follower axis.

IllustrationAction

Tap Torque quota.1

Type a number (between 0 and 10) for
the follower’s quota master torque.

2

For example, 0.95 will result in 95% of
the master torque will be set to the follow-
er.
Values above 1 should only be used in
case the follower axis is dimensioned
with higher torque possibilities.

To update the system parameters using
the new value, tap Store to cfg.

3

If not saved to cfg, the new value will be
used until the robot controller is restar-
ted, but the value will be lost at restart.

Tuning the temporary position delta
Use this procedure to tune the position delta of the torque follower axis. This delta
value is then used to adjust the fine calibration of the follower axis.

IllustrationAction

Tap Temp. position delta.1

Type a number (degrees on motor side)
that will be added to the position refer-
ence for the follower axis.

2

Continues on next page
Application manual - Controller software OmniCore 125
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.2 Using the service routine to tune a torque follower

IllustrationAction

Test which value results in the lowest
torque tension and make a fine calibra-
tion of the master axis. This will update
the follower axis with the current position
delta.

3

126 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.2 Using the service routine to tune a torque follower
Continued

2.6.5 Data setup

2.6.5.1 Set up data for the service routine

Overview
At start of the service routine for Electronically Linked Motors, some data variables
are read from the linked motor configuration. These variables are used by the
service routine. If they are not read correctly, the variables need to be edited in
the service routine.

Data descriptions

DescriptionData variable

A name for the follower axis that will be displayed on the FlexPendant.l_f_axis_name
String array with 5 elements, one for each follower axis. If you only have
one linked motor, use only the first element.

The name of the mechanical unit for the follower axis. Refers to the system
parameter Name in the type Mechanical Unit.

l_f_mecunt_n

String array with 5 elements, one for each follower axis. If you only have
one linked motor, use only the first element.

Defines which axis in the mechanical unit (l_f_mecunt_n) is the follower
axis.

l_f_axis_no

Num array with 5 elements, one for each follower axis. If you only have
one linked motor, use only the first element.

The name of the mechanical unit for the master axis. Refers to the system
parameter Name in the type Mechanical Unit.

l_m_mecunt_n

String array with 5 elements, one for each master axis. If you only have
one linked motor, use only the first element.

Defines which axis in the mechanical unit (l_m_mecunt_n) is the master
axis.

l_m_axis_no

Num array with 5 elements, one for each master axis. If you only have
one linked motor, use only the first element.

Defines the range where the AUTO function in the service program reset
the follower axis. offset_ratio defines this range as a multiple of the
range where the follower automatically follow the master (defined with
the parameter Max Follow Offset).

offset_ratio

If the follower has a position error that is larger than Max Follower Offset
* offset_ratio, the follower must be reset manually. For more informa-
tion, see Reset follower axis on page 122.

Defines the speed of the follower axis when controlled by the service
program. The values are given as a part of the maximum allowed manual
speed (that is, the value 0.5 means half the max manual speed).

speed_ratio

Num array with 20 elements. Elements 1-5 define the speed "very slow"
for each follower axis. Elements 6-10 define "slow", elements 11-15 define
"normal" and elements 16-20 define "fast". If you only have one linked
motor, use only elements 1, 6, 11 and 16.

Continues on next page
Application manual - Controller software OmniCore 127
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.5.1 Set up data for the service routine

DescriptionData variable

Defines the distance the follower axis will move for each tap on Positive
or Negativewhen jogging the follower axis from the service program. The
values are given in degrees or meters, depending on if the follower axis
is circular or linear.

displacement

Num array with 20 elements. Elements 1-5 define the displacement "very
short" for each follower axis. Elements 6-10 define "short", elements 11-
15 define "normal" and elements 16-20 define "long". If you only have one
linked motor, use only elements 1, 6, 11 and 16.

Edit data variables
If the data needs to be edited, use the Program Data app on the FlexPendant. See
Operating manual - OmniCore for more information on how to edit data.

128 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.5.1 Set up data for the service routine
Continued

2.6.5.2 Example of data setup

About this example
This is an example of how to set up the data variables for two follower axis. The
first follower axis is M8C1B1, which is a follower to the additional axis M7C1B1.
The second follower axis is M9C1B1, which is a follower to robot axis 6.

l_f_axis_name

Element and value in l_f_axis_nameRepresented axis

{1}: "follow_external"Follower 1

{2}: "follow_axis6"Follower 2

{3}: ""Follower 3

{4}: ""Follower 4

{5}: ""Follower 5

l_f_mecunt_n

Element and value in l_f_mecunt_nRepresented axis

{1}: "M8DM1"Follower 1

{2}: "M9DM1"Follower 2

{3}: ""Follower 3

{4}: ""Follower 4

{5}: ""Follower 5

l_f_axis_no

Element and value in l_f_axis_noRepresented axis

{1}: 1Follower 1

{2}: 1Follower 2

{3}: 0Follower 3

{4}: 0Follower 4

{5}: 0Follower 5

l_m_mecunt_n

Element and value in l_m_mecunt_nRepresented axis

{1}: "M7DM1"Master 1

{2}: "rob1"Master 2

{3}: ""Master 3

{4}: ""Master 4

{5}: ""Master 5

Continues on next page
Application manual - Controller software OmniCore 129
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.5.2 Example of data setup

l_m_axis_no

Element and value in l_m_axis_noRepresented axis

{1}: 1Master 1

{2}: 6Master 2

{3}: 0Master 3

{4}: 0Master 4

{5}: 0Master 5

offset_ratio

Element and value in offset_ratioRepresented axis

{1}: 10Follower 1

{2}: 15Follower 2

{3}: 0Follower 3

{4}: 0Follower 4

{5}: 0Follower 5

speed_ratio

fastnormalslowvery slowRepresented axis

{16}: 1{11}: 0.2{6}: 0.05{1}: 0.01Follower 1

{17}: 1{12}: 0.2{7}: 0.05{2}: 0.01Follower 2

{18}: 0{13}: 0{8}: 0{3}: 0Follower 3

{19}: 0{14}: 0{9}: 0{4}: 0Follower 4

{20}: 0{15}: 0{10}: 0{5}: 0Follower 5

displacement

longnormalshortvery shortRepresented axis

{16}: 0.1{11}: 0.02{6}: 0.005{1}: 0.001Follower 1

{17}: 10{12}: 1{7}: 0.1{2}: 0.01Follower 2

{18}: 0{13}: 0{8}: 0{3}: 0Follower 3

{19}: 0{14}: 0{9}: 0{4}: 0Follower 4

{20}: 0{15}: 0{10}: 0{5}: 0Follower 5

130 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.6.5.2 Example of data setup
Continued

2.7 File and I/O device handling

2.7.1 Introduction to file and I/O device handling

About file and I/O device handling
The RobotWare file and I/O device handling gives the robot programmer control
of files and fieldbuses from the RAPID code. This can, for example, be useful for:

• Reading from a bar code reader.
• Writing production statistics to a log file or to a printer.
• Transferring data between the robot and a PC.

The functionality for file and I/O device handling can be divided into groups:

DescriptionFunctionality group

Basic communication functionality. Communication
with binary or character based files or I/O devices.

Binary and character based commu-
nication

Data packed in a container. Especially intended for
fieldbus communication.

Raw data communication

Browsing and editing of file structures.File and directory management

Application manual - Controller software OmniCore 131
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.1 Introduction to file and I/O device handling

2.7.2 Binary and character based communication

2.7.2.1 Overview

Purpose
The purpose of binary and character based communication is to:

• store information in a remote memory or on a remote disk
• let the robot communicate with other devices

What is included
To handle binary and character based communication, RobotWare gives you access
to:

• instructions for manipulations of a file or I/O device
• instructions for writing to file or I/O device
• instruction for reading from file or I/O device
• functions for reading from file or I/O device.

Basic approach
This is the general approach for using binary and character based communication.
For a more detailed example of how this is done, see Code examples on page134.

1 Open a file or I/O device.
2 Read or write to the file or I/O device.
3 Close the file or I/O device.

Limitations
Access to files and I/O devices cannot be performed from different RAPID tasks
simultaneously. Such an access is performed by all instruction in binary and
character based communication, as well as WriteRawBytes and ReadRawBytes.
E.g. if a ReadBin instruction is executed in one task, it must be ready before a
WriteRawBytes can execute in another task.

132 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.2.1 Overview

2.7.2.2 RAPID components

Data types
This is a brief description of each data type used for binary and character based
communication. For more information, see the respective data type in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionData type

iodev contains a reference to a file or I/O device. It can be linked to the
physical unit with the instruction Open and then used for reading and
writing.

iodev

Instructions
This is a brief description of each instruction used for binary and character based
communication. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

Open is used to open a file or I/O device for reading or writing.Open

Close is used to close a file or I/O device.Close

Rewind sets the file position to the beginning of the file.Rewind

Write is used to write to a character based file or I/O device.Write

WriteBin is used to write a number of bytes to a binary I/O device or
file.

WriteBin

WriteStrBin is used to write a string to a binary I/O device or file.WriteStrBin

WriteAnyBin is used to write any type of data to a binary I/O device or
file.

WriteAnyBin

ReadAnyBin is used to read any type of data from a binary I/O device
or file.

ReadAnyBin

Functions
This is a brief description of each function used for binary and character based
communication. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

ReadNum is used to read a number from a character based file or I/O device.ReadNum

ReadStr is used to read a string from a character based file or I/O device.ReadStr

ReadBin is used to read a byte (8 bits) from a file or I/O device. This function
works on both binary and character based files or I/O devices.

ReadBin

ReadStrBin is used to read a string from a binary I/O device or file.ReadStrBin

Application manual - Controller software OmniCore 133
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.2.2 RAPID components

2.7.2.3 Code examples

Communication with character based file
This example shows writing and reading to and from a character based file. The
line "The number is :8" is written to FILE1.DOC. The contents of FILE1.DOC is then
read and the output to the FlexPendant is "The number is :8" followed by "The
number is 8".

PROC write_to_file()

VAR iodev file;

VAR num number:= 8;

Open "HOME:" \File:= "FILE1.DOC", file;

Write file, "The number is :"\Num:=number;

Close file;

ENDPROC

PROC read_from_file()

VAR iodev file;

VAR num number;

VAR string text;

Open "HOME:" \File:= "FILE1.DOC", file \Read;

TPWrite ReadStr(file);

Rewind file;

text := ReadStr(file\Delim:=":");

number := ReadNum(file);

Close file;

TPWrite text \Num:=number;

ENDPROC

Communication with binary file
In this example, the string "Hello", the current robot position and the string "Hi" is
written to the binary file.

PROC write_bin_chan()

VAR iodev file1;

VAR num out_buffer{20};

VAR num input;

VAR robtarget target;

Open "HOME:" \File:= "FILE1.DOC", file1 \Bin;

! Write control character enq

out_buffer{1} := 5;

WriteBin file1, out_buffer, 1;

! Wait for control character ack

input := ReadBin (file1 \Time:= 0.1);

IF input = 6 THEN

! Write "Hello" followed by new line

WriteStrBin file1, "Hello\0A";

Continues on next page
134 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.2.3 Code examples

! Write current robot position

target := CRobT(\Tool:= tool1\WObj:= wobj1);

WriteAnyBin file1, target;

! Set start text character (2=start text)

out_buffer{1} := 2;

! Set character "H" (72="H")

out_buffer{2} := 72;

! Set character "i"

out_buffer{3} := StrToByte("i"\Char);

! Set new line character (10=new line)

out_buffer{4} := 10;

! Set end text character (3=end text)

out_buffer{5} := 3;

! Write the buffer with the line "Hi"

! to the file

WriteBin file1, out_buffer, 5;

ENDIF

Close file1;

ENDPROC

Application manual - Controller software OmniCore 135
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.2.3 Code examples

Continued

2.7.3 Raw data communication

2.7.3.1 Overview

Purpose
The purpose of raw data communication is to pack different type of data into a
container and send it to a file or I/O device, and to read and unpack data. This is
particularly useful when communicating via a fieldbus, such as DeviceNet.

What is included
To handle raw data communication, RobotWare gives you access to:

• instructions used for handling the contents of a rawbytes variable
• instructions for reading and writing raw data
• a function to get the valid data length of a rawbytes variable.

Basic approach
This is the general approach for raw data communication. For a more detailed
example of how this is done, see Write and read rawbytes on page 138.

1 Pack data into a rawbytes variable (data of type num, byte or string).
2 Write the rawbytes variable to a file or I/O device.
3 Read a rawbytes variable from a file or I/O device.
4 Unpack the rawbytes variable to num, byte or string.

Limitations
Device command communication also require the base functionality Device
Command Interface and the option for the industrial network in question.
Access to files and I/O devices cannot be performed from different RAPID tasks
simultaneously. Such an access is performed by all instruction in binary and
character based communication, as well as WriteRawBytes and ReadRawBytes.
For example, if a ReadBin instruction is executed in one task, then it must be ready
before a WriteRawBytes instruction can execute in another task.

136 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.3.1 Overview

2.7.3.2 RAPID components

Data types
This is a brief description of each data type used for raw data communication. For
more information, see the respective data type in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

rawbytes is used as a general data container. It can be filled with any
data of types num, byte, or string. It also stores the length of the
valid data (in bytes).

rawbytes

rawbytes can contain up to 1024 bytes of data. The supported data
formats are listed in the instruction PackRawBytes, in Technical refer-
ence manual - RAPID Instructions, Functions and Data types.

Instructions
This is a brief description of each instruction used for raw data communication.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

ClearRawBytes is used to set all the contents of a rawbytes variable
to 0. The length of the valid data in the rawbytes variable is set to 0.

ClearRawBytes

ClearRawBytes can also be used to clear only the last part of a
rawbytes variable.

PackRawBytes is used to pack the contents of variables of type num,
byte or string into a variable of type rawbytes.

PackRawBytes

UnpackRawBytes is used to unpack the contents of a variable of type
rawbytes to variables of type byte, num or string.

UnpackRawBytes

CopyRawBytes is used to copy all or part of the contents from one
rawbytes variable to another.

CopyRawBytes

WriteRawBytes is used to write data of type rawbytes to any binary
file or I/O device.

WriteRawBytes

ReadRawBytes is used to read data of type rawbytes from any binary
file or I/O device.

ReadRawBytes

Functions
This is a brief description of each function used for raw data communication. For
more information, see the respective function in Technical referencemanual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

RawBytesLen is used to get the valid data length in a rawbytes vari-
able.

RawBytesLen

Application manual - Controller software OmniCore 137
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.3.2 RAPID components

2.7.3.3 Code examples

About the examples
These examples are simplified demonstrations of how to use rawbytes. For a
more realistic example of how to use rawbytes in DeviceNet communication, see
Write rawbytes to DeviceNet on page 111.

Write and read rawbytes
This example shows how to pack data into a rawbytes variable and write it to a
device. It also shows how to read and unpack a rawbytes variable.

VAR iodev io_device;

VAR rawbytes raw_data;

PROC write_rawbytes()

VAR num length := 0.2;

VAR string length_unit := "meters";

! Empty contents of raw_data

ClearRawBytes raw_data;

! Add contents of length as a 4 byte float

PackRawBytes length, raw_data,(RawBytesLen(raw_data)+1) \Float4;

! Add the string length_unit

PackRawBytes length_unit, raw_data,(RawBytesLen(raw_data)+1)
\ISOLatin1Encoding;

Open "HOME:" \File:= "FILE1.DOC", io_device \Bin;

! Write the contents of raw_data to io_device

WriteRawBytes io_device, raw_data;

Close io_device;

ENDPROC

PROC read_rawbytes()

VAR string answer;

! Empty contents of raw_data

ClearRawBytes raw_data;

Open "HOME:" \File:= "FILE1.DOC", io_device \Bin;

! Read from io_device into raw_data

ReadRawBytes io_device, raw_data \Time:=1;

Close io_device;

! Unpack raw_data to the string answer

Continues on next page
138 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.3.3 Code examples

UnpackRawBytes raw_data, 1, answer \ISOLatin1Encoding:=10;

ENDPROC

Copy rawbytes
In this example, all data from raw_data_1 and raw_data_2 is copied to
raw_data_3.

VAR rawbytes raw_data_1;

VAR rawbytes raw_data_2;

VAR rawbytes raw_data_3;

VAR num my_length:=0.2;

VAR string my_unit:=" meters";

PackRawBytes my_length, raw_data_1, 1 \Float4;

PackRawBytes my_unit, raw_data_2, 1 \ISOLatin1Encoding;

! Copy all data from raw_data_1 to raw_data_3

CopyRawBytes raw_data_1, 1, raw_data_3, 1;

! Append all data from raw_data_2 to raw_data_3

CopyRawBytes raw_data_2, 1, raw_data_3,(RawBytesLen(raw_data_3)+1);

Application manual - Controller software OmniCore 139
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.3.3 Code examples

Continued

2.7.4 File and directory management

2.7.4.1 Overview

Purpose
The purpose of the file and directory management is to be able to browse and edit
file structures (directories and files).

What is included
To handle file and directory management, RobotWare gives you access to:

• instructions for handling directories
• a function for reading directories
• instructions for handling files on a file structure level
• functions to retrieve size and type information.

Basic approach
This is the general approach for file and directory management. For more detailed
examples of how this is done, see Code examples on page 142.

1 Open a directory.
2 Read from the directory and search until you find what you are looking for.
3 Close the directory.

140 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.4.1 Overview

2.7.4.2 RAPID components

Data types
This is a brief description of each data type used for file and directory management.
For more information, see the respective data type in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

dir contains a reference to a directory on disk or network. It can be linked
to the physical directory with the instruction OpenDir.

dir

Instructions
This is a brief description of each instruction used for file and directory management.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

OpenDir is used to open a directory.OpenDir

CloseDir is used to close a directory.CloseDir

MakeDir is used to create a new directory.MakeDir

RemoveDir is used to remove an empty directory.RemoveDir

CopyFile is used to make a copy of an existing file.CopyFile

RenameFile is used to give a new name to an existing file. It can also be
used to move a file from one place to another in the directory structure.

RenameFile

RemoveFile is used to remove a file.RemoveFile

Functions
This is a brief description of each function used for file and directory management.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

ReadDir is used to retrieve the name of the next file or subdirectory under
a directory that has been opened with the instruction OpenDir.

ReadDir

Note that the first items read by ReadDir are . (full stop character) and ..
(double full stop characters) symbolizing the current directory and its parent
directory.

FileSize is used to retrieve the size (in bytes) of the specified file.FileSize

FSSize (File System Size) is used to retrieve the size (in bytes) of the file
system in which a specified file resides.FSSize can either retrieve the total
size or the free size of the system.

FSSize

IsFile test if the specified file is of the specified type. It can also be used
to test if the file exist at all.

IsFile

Application manual - Controller software OmniCore 141
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.4.2 RAPID components

2.7.4.3 Code examples

List files
This example shows how to list the files in a directory, excluding the directory itself
and its parent directory (. and ..).

PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

! Check that dirname really is a directory

IF IsFile(dirname \Directory) THEN

! Open the directory

OpenDir directory, dirname;

! Loop though the files in the directory

WHILE ReadDir(directory, filename) DO

IF (filename <> "." AND filename <> ".." THEN

TPWrite filename;

ENDIF

ENDWHILE

! Close the directory

CloseDir directory;

ENDIF

ENDPROC

Move file to new directory
This is an example where a new directory is created, a file renamed and moved to
the new directory and the old directory is removed.

VAR dir directory;

VAR string filename;

! Create the directory newdir

MakeDir "HOME:/newdir";

! Rename and move the file

RenameFile "HOME:/olddir/myfile", "HOME:/newdir/yourfile";

! Remove all files in olddir

OpenDir directory, "HOME:/olddir";

WHILE ReadDir(directory, filename) DO

IF (filename <> "." AND filename <> ".." THEN

RemoveFile "HOME:/olddir/" + filename;

ENDIF

ENDWHILE

CloseDir directory;

! Remove the directory olddir (which must be empty)

RemoveDir "HOME:/olddir";

Continues on next page
142 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.4.3 Code examples

Check sizes
In this example, the size of the file is compared with the remaining free space on
the file system. If there is enough space, the file is copied.

VAR num freefsyssize;

VAR num f_size;

! Get the size of the file

f_size := FileSize("HOME:/myfile");

! Get the free size on the file system

freefsyssize := FSSize("HOME:/myfile" \Free);

! Copy file if enough space free

IF f_size < freefsyssize THEN

CopyFile "HOME:/myfile", "HOME:/yourfile";

ENDIF

Application manual - Controller software OmniCore 143
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.7.4.3 Code examples

Continued

2.8 Fixed Position Events

2.8.1 Overview

Purpose
The purpose of Fixed Position Events is to make sure a program routine is executed
when the position of the TCP is well defined.
If a move instruction is called with the zone argument set to fine, the next routine
is always executed once the TCP has reached its target. If a move instruction is
called with the zone argument set to a distance (for example z20), the next routine
may be executed before the TCP is even close to the target. This is because there
is always a delay between the execution of RAPID instructions and the robot
movements.
Calling the move instruction with zone set to fine will slow down the movements.
With Fixed Position Events, a routine can be executed when the TCP is at a
specified position anywhere on the TCP path without slowing down the movement.

What is included
The RobotWare base functionality Fixed Position Events gives you access to:

• instructions used to define a position event
• instructions for moving the robot and executing the position event at the

same time
• instructions for moving the robot and calling a procedure while passing the

target, without first defining a position event

Basic approach
Fixed Position Events can either be used with one simplified instruction calling a
procedure or it can be set up following these general steps. For more detailed
examples of how this is done, see Code examples on page 148.

1 Declare the position event.
2 Define the position event:

• when it shall occur, compared to the target position
• what it shall do

3 Call a move instruction that uses the position event. When the TCP is as
close to the target as defined, the event will occur.

144 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.8.1 Overview

2.8.2 RAPID components and system parameters

Data types
This is a brief description of each data type in Fixed Position Events. For more
information, see the respective data type in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionData type

triggdata is used to store data about a position event.triggdata

A position event can take the form of setting an output signal or run-
ning an interrupt routine at a specific position along the movement
path of the robot.
triggdata also contains information on when the action shall occur,
for example when the TCP is at a defined distance from the target.
triggdata is a non-value data type.

triggios is used to store data about a position event used by the
instruction TriggLIOs.

triggios

triggios sets the value of an output signal using a num value.

triggiosdnum is used to store data about a position event used by
the instruction TriggLIOs.

triggiosdnum

triggiosdnum sets the value of an output signal using a dnum value.

triggstrgo is used to store data about a position event used by the
instruction TriggLIOs.

triggstrgo

triggstrgo sets the value of an output signal using a stringdig
value (string containing a number).

Instructions
This is a brief description of each instruction in Fixed Position Events. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

TriggIO defines the setting of an output signal and when to set that
signal. The definition is stored in a variable of type triggdata.

TriggIO

TriggIO can define the setting of the signal to occur at a certain
distance (in mm) from the target, or a certain time from the target. It
is also possible to set the signal at a defined distance or time from
the starting position.
By setting the distance to 0 (zero), the signal will be set when the TCP
is as close to the target as it gets (the middle of the corner path).

TriggEquipworks like TriggIO, with the difference that TriggEquip
can compensate for the internal delay of the external equipment.

TriggEquip

For example, the signal to a glue gun must be set a short time before
the glue is pressed out and the gluing begins.

TriggInt defines when to run an interrupt routine. The definition is
stored in a variable of type triggdata.

TriggInt

TriggInt defines at what distance (in mm) from the target (or from
the starting position) the interrupt routine shall be called. By setting
the distance to 0 (zero), the interrupt will occur when the TCP is as
close to the target as it gets (the middle of the corner path).

Continues on next page
Application manual - Controller software OmniCore 145
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.8.2 RAPID components and system parameters

DescriptionInstruction

TriggCheckIO defines a test of an input or output signal, and when
to perform that test. The definition is stored in a variable of type
triggdata.

TriggCheckIO

TriggCheckIO defines a test, comparing an input or output signal
with a value. If the test fails, an interrupt routine is called. As an option
the robot movement can be stopped when the interrupt occurs.
TriggCheckIO can define the test to occur at a certain distance (in
mm) from the target, or a certain time from the target. It is also possible
to perform the test at a defined distance or time from the starting po-
sition.
By setting the distance to 0 (zero), the interrupt routine will be called
when the TCP is as close to the target as it gets (the middle of the
corner path).

TriggRampAO defines the ramping up or down of an analog output
signal and when this ramping is performed. The definition is stored
in a variable of type triggdata.

TriggRampAO

TriggRampIO defines where the ramping of the signal is to start and
the length of the ramping.

TriggL is a move instruction, similar to MoveL. In addition to the
movement the TriggL instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggL

TriggL executes up to 8 position events stored as triggdata. These
must be defined before calling TriggL.

TriggC is a move instruction, similar to MoveC. In addition to the
movement the TriggC instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggC

TriggC executes up to 8 position events stored as triggdata. These
must be defined before calling TriggC.

TriggJ is a move instruction, similar to MoveJ. In addition to the
movement the TriggJ instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggJ

TriggJ executes up to 8 position events stored as triggdata. These
must be defined before calling TriggJ.

TriggLIOs is a move instruction, similar to MoveL. In addition to the
movement the TriggLIOs instruction can set output signals at fixed
positions.

TriggLIOs

TriggLIOs is similar to the combination of TriggEquip and TriggL.
The difference is that TriggLIOs can handle up to 50 position events
stored as an array of datatype triggios, triggiosdnum, or
triggstrgo.

MoveLSync is a linear move instruction that calls a procedure in the
middle of the corner path.

MoveLSync

MoveCSync is a circular move instruction that calls a procedure in
the middle of the corner path.

MoveCSync

MoveJSync is a joint move instruction that calls a procedure in the
middle of the corner path.

MoveJSync

Functions
Fixed Position Events includes no RAPID functions.

Continues on next page
146 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.8.2 RAPID components and system parameters
Continued

System parameters
This is a brief description of each parameter in Fixed Position Events. For more
information, see the respective parameter in Technical reference manual - System
parameters.

DescriptionParameter

TriggEquip takes advantage of the delay between the RAPID exe-
cution and the robot movement, which is about 70 ms. If the delay of
the equipment is longer than 70 ms, then the delay of the robot
movement can be increased by configuring Event preset time.

Event Preset Time

Event preset time belongs to the type Motion System in the topic
Motion.

Application manual - Controller software OmniCore 147
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.8.2 RAPID components and system parameters

Continued

2.8.3 Code examples

Example without Fixed Position Events
Without the use of Fixed Position Events, the code can look like this:

MoveJ p1, vmax, fine, tool1;

MoveL p2, v1000, z20, tool1;

SetDO do1, 1;

MoveL p3, v1000, fine, tool1;

Result
The code specifies that the TCP should reach p2 before setting do1. Because the
robot path is delayed compared to instruction execution, do1 is set when the TCP
is at the position marked with X (see illustration).

xx0300000151

Example with TriggIO and TriggL instructions
Setting the output signal 30 mm from the target can be arranged by defining the
position event and then moving the robot while the system is executing the position
event.

VAR triggdata do_set;

!Define that do1 shall be set when 30 mm from target

TriggIO do_set, 30 \DOp:=do1, 1;

MoveJ p1, vmax, fine, tool1;

!Move to p2 and let system execute do_set

TriggL p2, v1000, do_set, z20, tool1;

MoveL p3, v1000, fine, tool1;

Continues on next page
148 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.8.3 Code examples

Result
The signal do1 will be set when the TCP is 30 mm from p2. do1 is set when the
TCP is at the position marked with X (see illustration).

xx0300000158

Example with MoveLSync instruction
Calling a procedure when the robot path is as close to the target as possible can
be done with one instruction call.

MoveJ p1, vmax, fine, tool1;

!Move to p2 while calling a procedure

MoveLSync p2, v1000, z20, tool1, "proc1";

MoveL p3, v1000, fine, tool1;

Result
The procedure will be called when the TCP is at the position marked with X (see
illustration).

xx0300000165

Application manual - Controller software OmniCore 149
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.8.3 Code examples

Continued

2.9 Logical Cross Connections

2.9.1 Introduction to Logical Cross Connections

Purpose
The purpose of Logical Cross Connections is to check and affect combinations of
digital I/O signals (DO, DI) or group I/O signals (GO, GI). This can be used to verify
or control process equipment that are external to the robot. The functionality can
be compared to the one of a simple PLC.
By letting the I/O system handle logical operations with I/O signals, a lot of RAPID
code execution can be avoided. Logical Cross Connections can replace the process
of reading I/O signal values, calculate new values and writing the values to I/O
signals.
Here are some examples of applications:

• Interrupt program execution when either of three input signals is set to 1.
• Set an output signal to 1 when both of two input signals are set to 1.

Description
Logical Cross Connections are used to define the dependencies of an I/O signal
to other I/O signals. The logical operators AND, OR, and inverted signal values
can be used to configure more complex dependencies.
The I/O signals that constitute the logical expression (actor I/O signals) and the
I/O signal that is the result of the expression (resultant I/O signal) can be either
digital I/O signals (DO, DI) or group I/O signals (GO, GI).

What is included
Logical Cross Connections allows you to build logical expressions with up to 5
actor I/O signals and the logical operations AND, OR, and inverted signal values.

150 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.9.1 Introduction to Logical Cross Connections

2.9.2 Configuring Logical Cross Connections

System parameters
This is a brief description of the parameters for cross connections. For more
information, see the respective parameter inConfiguring Logical Cross Connections
on page 151.
These parameters belong to the type Cross Connection in the topic I/O System.

DescriptionParameter

Specifies the name of the cross connection.Name

The I/O signal that receive the result of the cross connection as its new
value.

Resultant

The first I/O signal to be used in the evaluation of the Resultant.Actor 1

If Invert actor 1 is set to Yes, then the inverted value of Actor 1 is used in
the evaluation of the Resultant.

Invert actor 1

Operand between Actor 1 and Actor 2.Operator 1
Can be either of the operands:

• AND - Results in the value 1 if both input values are 1.
• OR - Results in the value 1 if at least one of the input values are 1.

Note

The operators are calculated left to right (Operator 1 first and Operator 4
last).

The second I/O signal (if more than one) to be used in the evaluation of the
Resultant.

Actor 2

If Invert actor 2 is set to Yes, then the inverted value of Actor 2 is used in
the evaluation of the Resultant.

Invert actor 2

Operand between Actor 2 and Actor 3.Operator 2
See Operator 1.

The third I/O signal (if more than two) to be used in the evaluation of the
Resultant.

Actor 3

If Invert actor 3 is set to Yes, then the inverted value of Actor 3 is used in
the evaluation of the Resultant.

Invert actor 3

Operand between Actor 3 and Actor 4.Operator 3
See Operator 1.

The fourth I/O signal (if more than three) to be used in the evaluation of the
Resultant.

Actor 4

If Invert actor 4 is set to Yes, then the inverted value of Actor 4 is used in
the evaluation of the Resultant.

Invert actor 4

Operand between Actor 4 and Actor 5.Operator 4
See Operator 1.

The fifth I/O signal (if all five are used) to be used in the evaluation of the
Resultant.

Actor 5

If Invert actor 5 is set to Yes, then the inverted value of Actor 5 is used in
the evaluation of the Resultant.

Invert actor 5

Application manual - Controller software OmniCore 151
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.9.2 Configuring Logical Cross Connections

2.9.3 Examples

Logical AND
The following logical structure...

xx0300000457

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor
2

Operator 1Invert
actor 1

Actor 1Resultant

Nodo10ANDNodo2ANDNodi1do26

Logical OR
The following logical structure...

xx0300000459

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor
2

Operator 1Invert
actor 1

Actor
1

Resultant

Nodo10ORNodo2ORNodi1do26

Inverted signals
The following logical structure (where a ring symbolize an inverted signal)...

xx0300000460

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor
2

Operator 1Invert
actor 1

Actor
1

Resultant

Yesdo10ORNodo2ORYesdi1do26

Several resultants
The following logical structure can not be implemented with one cross connection...

xx0300000462

Continues on next page
152 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.9.3 Examples

... but with three cross connections it can be implemented as shown below.

Invert actor 2Actor 2Operator 1Invert actor 1Actor 1Resultant

Nodo2ANDNodi1di17

Nodo2ANDNodi1do26

Nodo2ANDNodi1do13

Complex conditions
The following logical structure...

xx0300000461

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor 2Operator 1Invert
actor 1

Actor
1

Resultant

Nodo3ANDNodi2do11

Yesdo3ANDNodi12do14

Nodo3ANDNodi13di11

Nodo3ANDNodi13do23

Nodo3ANDNodi13do17

Yesdi11ORNodo14ORNodo11do15

Nodo23ANDNodi11do33

Nodo3ANDNodo17do61

Yesdo33ORNodo15do54

Application manual - Controller software OmniCore 153
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.9.3 Examples

Continued

2.9.4 Limitations

Evaluation order
If more than two actor I/O signals are used in one cross connection, the evaluation
is made from left to right. This means that the operation between Actor 1 and Actor
2 is evaluated first and the result from that is used in the operation with Actor 3.
If all operators in one cross connection are of the same type (only AND or only
OR) the evaluation order has no significance. However, mixing AND and OR
operators, without considering the evaluation order, may give an unexpected result.

Tip

Use several cross connections instead of mixing AND and OR in the same cross
connection.

Maximum number of actor I/O signals
A cross connection may not have more than five actor I/O signals. If more actor
I/O signals are required, use several cross connections.

Maximum number of cross connections
The maximum number of cross connections handled by the robot system is 300.

Maximum depth
The maximum allowed depth of cross connection evaluations is 20.
A resultant from one cross connection can be used as an actor in another cross
connection. The resultant from that cross connection can in its turn be used as an
actor in the next cross connection. However, this type of chain of dependent cross
connections cannot be deeper than 20 steps.

Do not create a loop
Cross connections must not form closed chains since that would cause infinite
evaluation and oscillation. A closed chain appears when cross connections are
interlinked so that the chain of cross connections forms a circle.

Do not have the same resultant more than once
Ambiguous resultant I/O signals are not allowed since the outcome would depend
on the order of evaluation (which cannot be controlled). Ambiguous resultant I/O
signals occur when the same I/O signal is resultant in several cross connections.

Overlapping device maps
The resultant I/O signal in a cross connection must not have an overlapping device
map with any inverted actor I/O signals defined in the cross connection. Using I/O
signals with overlapping device map in a cross connection can cause infinity signal
setting loops.

154 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.9.4 Limitations

2.10 RAPID Message Queue

2.10.1 Introduction to RAPID Message Queue

Purpose
The purpose of RAPID Message Queue is to communicate with another RAPID
task or PC application using PC SDK.
Here are some examples of applications:

• Sending data between two RAPID tasks.
• Sending data between a RAPID task and a PC application.

RAPID Message Queue can be defined for interrupt or synchronous mode. Default
setting is interrupt mode.

What is included
The RAPID Message Queue functionality is included in the RobotWare options:

• Multitasking
• RobotStudio Connect

RAPID Message Queue gives you access to RAPID instructions, functions, and
data types for sending and receiving data.

Basic approach
This is the general approach for using RAPID Message Queue. For a more detailed
example of how this is done, see Code examples on page 162.

1 For interrupt mode: The receiver sets up a trap routine that reads a message
and connects an interrupt so the trap routine is called when a new message
appears.
For synchronous mode: The message is handled by a waiting or the next
executed RMQReadWait instruction.

2 The sender looks up the slot identity of the queue in the receiver task.
3 The sender sends the message.

Application manual - Controller software OmniCore 155
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.1 Introduction to RAPID Message Queue

2.10.2 RAPID Message Queue behavior

Illustration of communication
The picture below shows various possible senders, receivers, and queues in the
system. Each arrow is an example of a way to post a message to a queue.

PC
PC SDK

Queue

Robot
controller

Queue

Queue

RAPID
task

RAPID
task

en0700000430

Creating a PC SDK client
This manual only describes how to use RAPID Message Queue to make a RAPID
task communicate with other RAPID tasks and PC SDK clients. For information
about how to set up the communication on a PC SDK client, see http://developer-
center.robotstudio.com.

What can be sent in a message
The data in a message can be any data type in RAPID, except:

• non-value
• semi-value

Continues on next page
156 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.2 RAPID Message Queue behavior

http://developercenter.robotstudio.com
http://developercenter.robotstudio.com

• motsetdata

The data in a message can also be an array of a data type.
User defined records are allowed, but both sender and receiver must have identical
declarations of the record.

Tip

To keep backward compatibility, do not change a user defined record once it is
used in a released product. It is better to create a new record. This way, it is
possible to receive messages from both old and new applications.

Queue name
The name of the queue configured for a RAPID task is the same as the name of
the task with the prefix RMQ_, for example RMQ_T_ROB1. This name is used by
the instruction RMQFindSlot.

Queue handling
Messages in queues are handled in the order that they are received. This is known
as FIFO, first in first out. If a message is received while a previous message is
being handled, the new message is placed in the queue. As soon as the first
message handling is completed, the next message in the queue is handled.

Queue modes
The queue mode is defined with the system parameterRMQMode. Default behavior
is interrupt mode.

Interrupt mode
In interrupt mode the messages are handled depending on data type. Messages
are only handled for connected data types.
A cyclic interrupt must be set up for each data type that the receiver should handle.
The same trap routine can be called from more than one interrupt, that is for more
than one data type.
Messages of a data type with no connected interrupt will be discarded with only a
warning message in the event log.
Receiving an answer to the instruction RMQSendWait does not result in an interrupt.
No interrupt needs to be set up to receive this answer.

Synchronous mode
In synchronous mode, the task executes an RMQReadWait instruction to receive
a message of any data type. All messages are queued and handled in order they
arrive.
If there is a waiting RMQReadWait instruction, the message is handled immediately.
If there is no waiting RMQReadWait instruction, the next executed RMQReadWait

instruction will handle the message.

Continues on next page
Application manual - Controller software OmniCore 157
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.2 RAPID Message Queue behavior

Continued

Message content
A RAPID Message Queue message consists of a header, containing receiver
identity, and a RAPID message. The RAPID message is a pretty-printed string with
data type name (and array dimensions) followed by the actual data value.
RAPID message examples:

"robtarget;[[930,0,1455],[1,0,0,0],[0,0,0,0],
[9E9,9E9,9E9,9E9,9E9,9E9]]"

"string;"A message string""

"msgrec;[100,200]"

"bool{2,2};[[TRUE,TRUE],[FALSE,FALSE]]"

RAPID task not executing
It is possible to post messages to a RAPID task queue even though the RAPID
task containing the queue is not currently executing. The interrupt will not be
executed until the RAPID task is executing again.

Message size limitations
Before a message is sent, the maximum size (for the specific data type and
dimension) is calculated. If the size is greater than 5000 bytes, the message will
be discarded and an error will be raised. The sender can get same error if the
receiver is a PC SDK client with a maximum message size smaller than 400 bytes.
Sending a message of a specific data type with specific dimensions will either
always be possible or never possible.
When a message is received (when calling the instruction RMQGetMsgData), the
maximum size (for the specific data type and dimension) is calculated. If the size
is greater than the maximum message size configured for the queue of this task,
the message will be discarded and an error will be logged. Receiving a message
of a specific data type with specific dimensions will either always be possible or
never possible.

Message lost
In interrupt mode, any messages that cannot be received by a RAPID task will be
discarded. The message will be lost and a warning will be placed in the event log.
Example of reasons for discarding a message:

• The data type that is sent is not supported by the receiving task.
• The receiving task has not set up an interrupt for the data type that is sent,

and no RMQSendWait instruction is waiting for this data type.
• The interrupt queue of the receiving task is full

Queue lost
The queue is cleared at power fail.
When the execution context in a RAPID task is lost, for example when the program
pointer is moved to main, the corresponding queue is emptied.

Continues on next page
158 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.2 RAPID Message Queue behavior
Continued

Related information
For more information on queues and messages, see Technical reference
manual - RAPID kernel.

Application manual - Controller software OmniCore 159
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.2 RAPID Message Queue behavior

Continued

2.10.3 System parameters

About the system parameters
This is a brief description of each parameter in the functionality RAPID Message
Queue. For more information, see the respective parameter in Technical reference
manual - System parameters.

Type Task
These parameters belong to the type Task in the topic Controller.

DescriptionParameter

Can have one of the following values:
• None - Disable all communication with RAPID Message

Queue for this RAPID task.
• Internal - Enable the receiving of RAPID Message

Queue messages from other tasks on the controller,
but not from external clients (FlexPendant and PC ap-
plications). The task is still able to send messages to
external clients.

• Remote - Enable communication with RAPID Message
Queue for this task, both with other tasks on the con-
troller and external clients (FlexPendant and PC applic-
ations).

The default value is None.

RMQ Type

Defines the mode of the queue.RMQ Mode
Can have one of the following values:

• Interrupt - A message can only be received by connect-
ing a trap routine to a specified message type.

• Synchronous - A message can only be received by
executing an RMQReadWait instruction.

Default value is Interrupt.

The maximum data size, in bytes, for a RAPID Message
Queue message.

RMQ Max Message Size

An integer between 400 and 3000. The default value is 400.

Note

The value cannot be changed in RobotStudio or on the Flex-
Pendant. The only way to change the value is to edit the
sys.cfg file by adding the attribute RmqMaxMsgSize with the
desired value.

The maximum number of RAPID Message Queue messages
in the queue to this task.

RMQ Max No Of Messages

An integer between 1 and 10. The default value is 5.

Note

The value cannot be changed in RobotStudio or on the Flex-
Pendant. The only way to change the value is to edit the
sys.cfg file by adding the attribute RmqMaxNoOfMsgwith the
desired value.

160 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.3 System parameters

2.10.4 RAPID components

About the RAPID components
This is a brief description of each instruction, function, and data type in RAPID
Message Queue. For more information, see the respective parameter in Technical
reference manual - RAPID Instructions, Functions and Data types.

Instructions

DescriptionInstruction

Find the slot identity number of the queue configured for a
RAPID task or Robot Application Builder client.

RMQFindSlot

Send data to the queue configured for a RAPID task or Robot
Application Builder client.

RMQSendMessage

Order and enable cyclic interrupts for a specific data type.IRMQMessage

Get the first message from the queue of this task. Can only
be used if RMQ Mode is defined as Interrupt.

RMQGetMessage

Get the header part from a message.RMQGetMsgHeader

Get the data part from a message.RMQGetMsgData

Send a message and wait for the answer. Can only be used
if RMQ Mode is defined as Interrupt.

RMQSendWait

Wait for a message. Can only be used ifRMQMode is defined
as Synchronous.

RMQReadWait

Empty the queue.RMQEmptyQueue

Functions

DescriptionFunction

Get the name of the queue configured for a RAPID task or
Robot Application Builder client, given a slot identity number,
i.e. given a rmqslot.

RMQGetSlotName

Data types

DescriptionData type

Slot identity of a RAPID task or Robot Application Builder
client.

rmqslot

A message used to store data in when communicating with
RAPID Message Queue. It contains information about what
type of data is sent, the slot identity of the sender, and the
actual data.

rmqmessage

Note: rmqmessage is a large data type. Declaring too many
variables of this data type can lead to memory problems.
Reuse the same rmqmessage variables as much as possible.

The rmqheader describes the message and can be read by
the RAPID program.

rmqheader

Application manual - Controller software OmniCore 161
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.4 RAPID components

2.10.5 Code examples

Example with RMQSendMessage and RMQGetMessage
This is an example where the sender creates data (x and y value) and sends it to
another task. The receiving task gets the message and extract the data to the
variable named data.

Sender
MODULE SenderMod

RECORD msgrec

num x;

num y;

ENDRECORD

PROC main()

VAR rmqslot destinationSlot;

VAR msgrec data;

VAR robtarget p_current;

! Connect to queue in other task

RMQFindSlot destinationSlot "RMQ_OtherTask";

! Perform cycle

WHILE TRUE DO

...

p_current := CRobT(\Tool:=tool1 \WObj:=wobj0);

data.x := p_current.trans.x;

data.y := p_current.trans.y;

! Send message

RMQSendMessage destinationSlot, data;

...

ENDWHILE

ERROR

IF ERRNO = ERR_RMQ_INVALID THEN

WaitTime 1;

! Reconnect to queue in other task

RMQFindSlot destinationSlot "RMQ_OtherTask";

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

ELSIF ERRNO = ERR_RMQ_FULL THEN

WaitTime 1;

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

ENDIF

ENDPROC

ENDMODULE

PC SDK client
public void RMQReceiveRecord()

Continues on next page
162 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.5 Code examples

{

const string destination_slot = "RMQ_OtherTask";

IpcQueue queue = Controller.Ipc.CreateQueue(destination_slot,
16, Ipc.MaxMessageSize);

// Till application is closed

while (uiclose)

{

IpcMessage message = new IpcMessage();

IpcReturnType retValue = IpcReturnType.Timeout;

retValue = queue.Receive(1000, message);

if (IpcReturnType.OK == retValue)

{

// PCSDK App will receive following record

// RECORD msgrec

// num x;

// num y;

// ENDRECORD

// num data type in RAPID is 3 bytes long, hence will receive
6 bytes for x and y

// first byte do left shift by 16,

// second byte do left shift by 8 and OR all three byte to
get x

// do similar for y

Int32 x = (message.Data[0] << 16) | (message.Data[1] << 8)
| message.Data[2];

Int32 y = (message.Data[3] << 16) | (message.Data[4] << 8)
| message.Data[5];

// Display x and y

}

}

if (Controller.Ipc.Exists(destination_slot))

Controller.Ipc.DeleteQueue(Controller.Ipc.GetQueueId(destination_slot));

}

Example with RMQSendWait
This is an example of a RAPID program that sends a message and wait for an
answer before execution continues by getting the answer message.

MODULE SendAndReceiveMod

VAR rmqslot destinationSlot;

VAR rmqmessage recmsg;

VAR string send_data := "How many units should be produced?";

VAR num receive_data;

PROC main()

! Connect to queue in other task

RMQFindSlot destinationSlot "RMQ_OtherTask";

Continues on next page
Application manual - Controller software OmniCore 163
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.5 Code examples

Continued

! Send message and wait for the answer

RMQSendWait destinationSlot, send_data, recmsg, receive_data
\Timeout:=30;

! Handle the received data

RMQGetMsgData recmsg, receive_data;

TPWrite "Units to produce: " \Num:=receive_data;

ERROR

IF ERRNO = ERR_RMQ_INVALID THEN

WaitTime 1;

! Reconnect to queue in other task

RMQFindSlot destinationSlot "RMQ_OtherTask";

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

ELSIF ERRNO = ERR_RMQ_FULL THEN

WaitTime 1;

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

ELSEIF ERRNO = ERR_RMQ_TIMEOUT THEN

! Avoid execution stop due to retry count exceed

ResetRetyCount;

RETRY;

ENDIF

ENDPROC

ENDMODULE

Example with RMQReceiveSend
public void RMQReceiveSend()

{

const string destination_slot = "RMQ_OtherTask";

IpcQueue queue = Controller.Ipc.CreateQueue(destination_slot,
16, Ipc.MaxMessageSize);

// Till application is closed

while (uiclose)

{

IpcMessage message = new IpcMessage();

IpcReturnType retValue = IpcReturnType.Timeout;

retValue = queue.Receive(1000, message);

if (IpcReturnType.OK == retValue)

{

// Received message "How many units should be produced?"

if (message.ToString() == "How many units should be
produced?")

{

Int32 UnitsToProduce = 100;

Continues on next page
164 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.5 Code examples
Continued

// num data type in Rapid is 3 bytes long, hence will
send 3 bytes to Rapid Module

byte[] @bytes = new byte[3];

bytes[0] = (byte)(UnitsToProduce >> 16);

bytes[1] = (byte)(UnitsToProduce >> 8);

bytes[2] = (byte)UnitsToProduce;

// Send UnitsToProduce to Rapid Module

message.SetData(@bytes);

queue.Send(message);

}

}

}

if (Controller.Ipc.Exists(destination_slot))

Controller.Ipc.DeleteQueue(Controller.Ipc.GetQueueId(destination_slot));

}

Application manual - Controller software OmniCore 165
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.10.5 Code examples

Continued

2.11 Socket Messaging

2.11.1 Introduction to Socket Messaging

Purpose
The purpose of Socket Messaging is to allow a RAPID programmer to transmit
application data between computers, using the TCP/IP network protocol. A socket
represents a general communication channel, independent of the network protocol
being used.
Socket communication is a standard that has its origin in Berkeley Software
Distribution Unix. Besides Unix, it is supported by, for example, Microsoft Windows.
With Socket Messaging, a RAPID program on a robot controller can, for example,
communicate with a C/C++ program on another computer.

What is included
The RobotWare functionality Socket Messaging gives you access to RAPID data
types, instructions and functions for socket communication between computers.

Basic approach
This is the general approach for using Socket Messaging. For a more detailed
example of how this is done, seeCode examples for SocketMessaging on page171.

1 Create a socket, both on client and server. A robot controller can be either
client or server.

2 Use SocketBind and SocketListen on the server, to prepare it for a
connection request.

3 Order the server to accept incoming socket connection requests.
4 Request socket connection from the client.
5 Send and receive data between client and server.

166 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.11.1 Introduction to Socket Messaging

2.11.2 Schematic picture of socket communication

Illustration of socket communication

en0600003224

Tip

Do not create and close sockets more than necessary. Keep the socket open
until the communication is completed. The socket is not really closed until a
certain time after SocketClose (due to TCP/IP functionality).

Application manual - Controller software OmniCore 167
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.11.2 Schematic picture of socket communication

2.11.3 Technical facts about Socket Messaging

Overview
When using the functionality Socket Messaging to communicate with a client or
server that is not a RAPID task, the following information can be useful.

No string termination
When sending a data message, no string termination sign is sent in the message.
The number of bytes sent is equal to the return value of the function strlen(str)
in the programming language C.

Unintended merge of messages
If sending two messages with no delay between them, the result can be that the
second message is appended to the first. The result is one big message instead
of two messages. To avoid this, use acknowledge messages from the receiver of
the data, if the client/server is just receiving messages.

Non printable characters
If a client that is not a RAPID task needs to receive non printable characters (binary
data) in a string from a RAPID task, this can be done by RAPID as shown in the
example below.

SocketSend socket1 \Str:="\0D\0A";

For more information, see Technical reference manual - RAPID kernel, section
String literals.

168 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.11.3 Technical facts about Socket Messaging

2.11.4 RAPID components

Data types
This is a brief description of each data type in Socket Messaging. For more
information, see Technical reference manual - RAPID Instructions, Functions and
Data types.

DescriptionData type

A socket device used to communicate with other computers on a net-
work.

socketdev

Can contain status information from a socketdev variable.socketstatus

Instructions for client
This is a brief description of each instruction used by the a Socket Messaging
client. For more information, see Technical referencemanual - RAPID Instructions,
Functions and Data types.

DescriptionInstruction

Creates a new socket and assigns it to a socketdev variable.SocketCreate

Makes a connection request to a remote computer. Used by the client
to connect to the server.

SocketConnect

Sends data via a socket connection to a remote computer. The data
can be a string or rawbytes variable, or a byte array.

SocketSend

Receives data and stores it in a string or rawbytes variable, or in
a byte array.

SocketReceive

Closes a socket and release all resources.SocketClose

Tip

Do not use SocketClose directly after SocketSend. Wait for acknowledgement
before closing the socket.

Instructions for server
A Socket Messaging server uses the same instructions as the client, except for
SocketConnect. In addition, the server use the following instructions:

DescriptionInstruction

Binds the socket to a specified port number on the server.
Used by the server to define on which port (on the server) to
listen for a connection.

SocketBind

The IP address defines a physical computer and the port
defines a logical channel to a program on that computer.

Makes the computer act as a server and accept incoming
connections. It will listen for a connection on the port specified
by SocketBind.

SocketListen

Accepts an incoming connection request. Used by the server
to accept the client’s request.

SocketAccept

Continues on next page
Application manual - Controller software OmniCore 169
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.11.4 RAPID components

Note

The server application must be started before the client application, so that the
instruction SocketAccept is executed before any client execute
SocketConnect.

Functions
This is a brief description of each function in Socket Messaging. For more
information, see Technical reference manual - RAPID Instructions, Functions and
Data types.

DescriptionFunction

Returns information about the last instruction performed on the socket
(created, connected, bound, listening, closed).

SocketGetStatus

SocketGetStatus does not detect changes from outside RAPID (such
as a broken connection).

170 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.11.4 RAPID components
Continued

2.11.5 Code examples for Socket Messaging

Example of client/server communication
This example shows program code for a client and a server, communicating with
each other.
The server will write on the FlexPendant:

Client wrote - Hello server

Client wrote - Shutdown connection

The client will write on its FlexPendant:
Server wrote - Message acknowledged

Server wrote - Shutdown acknowledged

In this example, both the client and the server use RAPID programs. In reality, one
of the programs would often be running on a PC (or similar computer) and be
written in another program language.
Code example for client, contacting server with IP address 192.168.0.2:

! WaitTime to delay start of client.

! Server application should start first.

WaitTime 5;

VAR socketdev socket1;

VAR string received_string;

PROC main()

SocketCreate socket1;

SocketConnect socket1, "192.168.0.2", 1025;

! Communication

SocketSend socket1 \Str:="Hello server";

SocketReceive socket1 \Str:=received_string;

TPWrite "Server wrote - " + received_string;

received_string := "";

! Continue sending and receiving

...

! Shutdown the connection

SocketSend socket1 \Str:="Shutdown connection";

SocketReceive socket1 \Str:=received_string;

TPWrite "Server wrote - " + received_string;

SocketClose socket1;

ENDPROC

Code example for server (with IP address 192.168.0.2):
VAR socketdev temp_socket;

VAR socketdev client_socket;

VAR string received_string;

VAR bool keep_listening := TRUE;

PROC main()

SocketCreate temp_socket;

SocketBind temp_socket, "192.168.0.2", 1025;

SocketListen temp_socket;

WHILE keep_listening DO

! Waiting for a connection request

SocketAccept temp_socket, client_socket;

Continues on next page
Application manual - Controller software OmniCore 171
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.11.5 Code examples for Socket Messaging

! Communication

SocketReceive client_socket \Str:=received_string;

TPWrite "Client wrote - " + received_string;

received_string := "";

SocketSend client_socket \Str:="Message acknowledged";

! Shutdown the connection

SocketReceive client_socket \Str:=received_string;

TPWrite "Client wrote - " + received_string;

SocketSend client_socket \Str:="Shutdown acknowledged";

SocketClose client_socket;

ENDWHILE

SocketClose temp_socket;

ENDPROC

Example of error handler
The following error handlers will take care of power failure or broken connection.
Error handler for client in previous example:

! Error handler to make it possible to handle power fail

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

SocketClose socket1;

! WaitTime to delay start of client.

! Server application should start first.

WaitTime 10;

SocketCreate socket1;

SocketConnect socket1, "192.168.0.2", 1025;

RETRY;

ELSE

TPWrite "ERRNO = "\Num:=ERRNO;

Stop;

ENDIF

Error handler for server in previous example:
! Error handler for power fail and connection lost

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

SocketClose temp_socket;

SocketClose client_socket;

SocketCreate temp_socket;

SocketBind temp_socket, "192.168.0.2", 1025;

SocketListen temp_socket;

SocketAccept temp_socket, client_socket;

RETRY;

ELSE

TPWrite "ERRNO = "\Num:=ERRNO;

Stop;

ENDIF

172 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.11.5 Code examples for Socket Messaging
Continued

2.12 User logs

2.12.1 Introduction to User logs

Description
The RobotWare base functionality User logs generates event logs for the most
common user actions. The event logs are generated in the group Operational
events, number series 1 xxxx.
For more information on handling the event log, see Operating manual - OmniCore
and Technical reference manual - Event logs for RobotWare 7.

Purpose
The purpose of User logs is to track changes in the robot controller related to user
actions. This can for example be helpful to find the root cause if a production stop
occurs.

What is included
The RobotWare base functionalityUser logs generates event logs for the following
changes related to user actions:

User actionTopic

Changing the speed or run mode (single cycle/continuous).
Making changes to the task selection panel. Setting or reset-
ting non motion execution mode.

Program execution

Simulating wait instructions, for example WaitTime,
WaitUntil, WaitDx, etc.

Simulate wait instructions

Opening or closing RAPID programs or modules, editing
RAPID code, or modifying robot positions.

RAPID changes

Moving the program pointer to main, to a routine, to a posi-
tion, or to a service routine (call routine).

Program pointer movements

Updating the revolution counters or performing a calibration.Changes on the mechanical
unit

Changing the tool, the work object, the payload, the coordin-
ate system, or go to a position.

Jogging

Setting or resetting the jog or path supervision. Setting the
level of supervision.

Supervision

Loading configuration data or changing a configuration at-
tribute.

Change of configuration

Clearing the event log or changing date and time.System changes

Changing the data in the serial measurement board or
changing the data in the robot memory.

Serial measurement board

Application manual - Controller software OmniCore 173
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

2 RobotWare-OS
2.12.1 Introduction to User logs

This page is intentionally left blank

3 Motion Performance
3.1 Absolute Accuracy [3101-x]

3.1.1 About Absolute Accuracy

Purpose
Absolute Accuracy is a calibration concept that improves TCP accuracy. The
difference between an ideal robot and a real robot can be several millimeters,
resulting from mechanical tolerances and deflection in the robot structure.Absolute
Accuracy compensates for these differences.
Here are some examples of when this accuracy is important:

• Exchangeability of robots
• Offline programming with no or minimum touch-up
• Online programming with accurate movement and reorientation of tool
• Programming with accurate offset movement in relation to eg. vision system

or offset programming
• Re-use of programs between applications

The option Absolute Accuracy is integrated in the controller algorithms and does
not need external equipment or calculation.

Note

The performance data is applicable to the corresponding RobotWare version of
the individual robot.

What is included
Every Absolute Accuracy robot is delivered with:

• compensation parameters saved in the robot memory
• a birth certificate representing the Absolute Accuracy measurement protocol

for the calibration and verification sequence.
A robot with Absolute Accuracy calibration has a label with this information on the
manipulator.
Absolute Accuracy supports floor mounted, wall mounted, and ceiling mounted
installations. The compensation parameters that are saved in the robot memory
differ depending on which Absolute Accuracy option is selected.

When is Absolute Accuracy being used
Absolute Accuracy works on a robot target in Cartesian coordinates, not on the
individual joints. Therefore, joint based movements (e.g. MoveAbsJ) will not be
affected.

Continues on next page
Application manual - Controller software OmniCore 175
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.1 About Absolute Accuracy

If the robot is inverted, the Absolute Accuracy calibration must be performed when
the robot is inverted.

Absolute Accuracy active
Absolute Accuracy will be active in the following cases:

• Any motion function based on robtargets (e.g. MoveL) and ModPos on
robtargets

• Reorientation jogging
• Linear jogging
• Tool definition (4, 5, 6 point tool definition, room fixed TCP, stationary tool)
• Work object definition

Absolute Accuracy not active
The following are examples of when Absolute Accuracy is not active:

• Any motion function based on a jointtarget (MoveAbsJ)
• Independent joint
• Joint based jogging
• Additional axes
• Track motion

Note

In a robot system with, for example, an additional axis or track motion, the
Absolute Accuracy is active for the manipulator but not for the additional axis or
track motion.

RAPID instructions
There are no RAPID instructions included in this option.

176 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.1 About Absolute Accuracy
Continued

3.1.2 Useful tools

Overview
The following products are recommended for operation and maintenance of
Absolute Accurate robots:

• Load Identification
• CalibWare (Absolute Accuracy calibration tool)

Load Identification
Absolute Accuracy calculates the robot's deflection depending on payload. It is
very important to have an accurate description of the load.
Load Identification is a tool that determines the mass, center of gravity, and inertia
of the payload.
For more information, see Operating manual - OmniCore.

CalibWare
CalibWare, provided by ABB, is a tool for calibrating Absolute Accuracy. The
documentation to CalibWare describes the Absolute Accuracy calibration procedure
in detail.
CalibWare is used at initial calibration and when servicing the robot.

Application manual - Controller software OmniCore 177
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.2 Useful tools

3.1.3 Configuration

Activate Absolute Accuracy
Use RobotStudio and follow these steps (see Operating manual - RobotStudio for
more information):

1 If you do not already have write access, click Request Write Access and
wait for grant from the FlexPendant.

2 Click Configuration Editor and select Motion.
3 Click the type Robot.
4 For the parameter Use Robot Calibration, change the value to r1_calib.
5 Restart the controller for the changes to take effect.

Deactivate Absolute Accuracy
Use RobotStudio and follow these steps (see Operating manual - RobotStudio for
more information):

1 If you do not already have write access, click Request Write Access and
wait for grant from the FlexPendant.

2 Click Configuration Editor and select the topic Motion.
3 Click the type Robot.
4 Configure the parameter Use Robot Calibration and change the value to

"r1_uncalib".
5 Restart the controller for the changes to take effect.

Change calibration data
If you exchange the manipulator, the calibration data for the new manipulator must
be loaded. This is done by copying the calibration data from the robot memory to
the robot controller.
Use the FlexPendant and follow these steps (for more information, see Operating
manual - OmniCore):

1 On the start screen, tapCalibrate, and then selectCalibration from the menu.
2 Tap on the robot you wish to update.
3 Tap the tab Robot Memory.
4 Tap Advanced.
5 Tap Clear Controller Memory.
6 Tap Clear and then confirm by tapping Yes.
7 Tap Close.
8 Tap Update.
9 Tap Cabinet or robot has been exchanged and confirm by tapping Yes.

178 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.3 Configuration

3.1.4 Maintenance

3.1.4.1 Maintenance that affect the accuracy

Overview
This section will focus on those maintenance activities that directly affect the
accuracy of the robot, summarized as follows:

• Tool recalibration
• Motor replacement
• Wrist replacement (large robots)
• Arm replacement (lower arm, upper arm, gearbox, foot)
• Manipulator replacement
• Loss of accuracy

Note

If the RobotWare version on the controller must be downgraded, then contact
your local ABB for support regarding compatible versions of Absolute Accuracy.

Tool recalibration
For information about tool recalibration, see Tool calibration on page 193.

Motor replacement
Replacement of all motors requires a re-calibration of the corresponding resolver
offset parameter using the standard calibration method for the respective robot.
This is described in the product manual for the robot.
If the motor replacement requires disassembly of the arm, then see Arm
replacement or disassembly on page 179.

Wrist replacement
Replacement of the wrist unit requires a re-calibration of the resolver offsets for
axes 5 and 6 using the standard calibration method for the respective robot.

Arm replacement or disassembly
Replacement of any of the robot arms, or other mechanical structure (excluding
wrist), changes the structure of the robot to the extent that a robot recalibration is
required. It is recommended that, after an arm replacement, the entire robot should
be recalibrated to ensure optimal Absolute Accuracy functionality. This is typically
performed with CalibWare and a separate measurement system. CalibWare can
be used together with any generic 3Dmeasurement system.
For more information about the calibration process, see documentation for
CalibWare.

Continues on next page
Application manual - Controller software OmniCore 179
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.4.1 Maintenance that affect the accuracy

A summary of the calibration process is presented as follows:

Action

Replace the affected component.1

Perform a resolver offset calibration for all axes. See the product manual for the
respective robot.

2

Recalibrate the TCP.3

Check the accuracy by comparison to a fixed reference point in the cell.4

Check the accuracy of the work objects.

Note

An update of the defined work objects will make the deviation less in positioning.

5

Check the accuracy of the positions in the current application.6

If the accuracy still is unsatisfactory, perform an Absolute Accuracy calibration of
the entire robot. See documentation for CalibWare.

7

Manipulator replacement
When a robot manipulator is replaced without replacing the controller cabinet, it
is necessary to update the Absolute Accuracy parameters in the controller cabinet
and realign the robot to the cell. The Absolute Accuracy parameters are updated
by loading the replacement robot’s calibration parameters into the controller as
described in Change calibration data on page178. Ensure that the calibration data
is loaded and that Absolute Accuracy is activated.
The alignment of the replacement robot to the cell depends on the robot alignment
technique chosen at installation. If the robot mounting pins are aligned to the cell
then the robot need only be placed on the pins - no further alignment is necessary.
If the robot was aligned using a robot program then it is necessary to measure the
cell fixture(s) and measure the robot in several positions (for best results use the
same program as the original robot). See Measure robot alignment on page 191.

180 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.4.1 Maintenance that affect the accuracy
Continued

3.1.4.2 Loss of accuracy

Cause and action
Loss of accuracy usually occur after robot collision or large temperature variations.
It is necessary to determine the cause of the errors, and take adequate action.

...then...If...

recalibrate if the TCP has changed.the tool is not prop-
erly calibrated

run Load Identification to ensure correct mass, centre of gravity and
inertia for the active tool.

the tool load is not
correctly defined

1 Check that the axis scales show that the robot stands correctly
in the home position.

2 If the indicators are not aligned, move the robot to correct posi-
tion and update the revolution counters.

3 If the indicators are close to aligned but not correct, re-calibrate
with the standard calibration for the robot.

the resolver offsets
are no longer valid

1 Check by moving the robot to a predefined position on the fix-
ture(s).

2 Visually assessing whether the deviation is excessive.
3 If excessive, realign robot to fixture(s).

the robot’s relation-
ship to the fix-
ture(s) has
changed

1 Visually assess whether the robot is damaged.
2 If damaged then replace entire manipulator -or- replace affected

arm(s) -or- recalibrate affected arm(s).

the robot structure
has changed

Application manual - Controller software OmniCore 181
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.4.2 Loss of accuracy

3.1.5 Compensation theory

3.1.5.1 Error sources

Types of errors
The errors compensated for in the controller derive from the mechanical tolerances
of the constituent robot parts. A subset of these are detailed in the illustration
below.
Compliance errors are due to the effect of the robot’s own weight together with the
weight of the current payload. These errors depend on gravity and the
characteristics of the load. The compensation of these errors is most efficient if
you use Load Identification (see Operating manual - OmniCore).
Kinematic errors are caused by position or orientational deviations in the robot
axes. These are independent of the load.

Illustration
There are several types of errors that can occur in each joint.

en0300000232

182 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.5.1 Error sources

3.1.5.2 Absolute Accuracy compensation

Introduction
Both compliance and kinematic errors are compensated for with "fake targets".
Knowing the deflection of the robot (i.e. deviation from ordered position), Absolute
Accuracy can compensate by ordering the robot to a fake target.
The compensation works on a robot target in cartesian coordinates, not on the
individual joints. This means that it is the position of the TCP (marked with an arrow
in the following illustrations) that is correctly compensated.

Desired position
The following illustration shows the position you want the robot to have.

xx0300000225

Position due to deflection
The following illustration shows the position the robot will get without Absolute
Accuracy. The weight of the robot arms and the load will make a deflection on the
robot. Note that the deflection is exaggerated.

xx0300000227

Fake target
In order to get the desired position, Absolute Accuracy calculates a fake target.
When you enter a desired position, the system recalculates it to a fake target that
after the deflection will result in the desired position.

xx0300000226

Continues on next page
Application manual - Controller software OmniCore 183
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.5.2 Absolute Accuracy compensation

Compensated position
The actual position will be the same as your desired position. As a user you will
not notice the fake target or the deflection. The robot will behave as if it had no
deflection.

xx0300000224

184 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.5.2 Absolute Accuracy compensation
Continued

3.1.6 Preparation of Absolute Accuracy robot

3.1.6.1 ABB calibration process

Overview
This section describes the calibration process that ABB performs on each Absolute
Accuracy robot, regardless of robot type or family, before it is delivered.
The process can be divided in four steps:

1 Resolver offset calibration
2 Absolute Accuracy calibration
3 Calibration data stored in the robot memory
4 Absolute Accuracy verification
5 Generation of a birth certificate

Resolver offset calibration
The resolver offset calibration process is used to calibrate the resolver offset
parameters.
For information on how to do this, see the product manual for the respective robot.

Absolute Accuracy calibration
The Absolute Accuracy calibration is performed on top of the resolver offset
calibration, hence the importance of having repeatable methods for both processes.
Each robot is calibrated with maximum load to ensure that the correct compensation
parameters are detected (calibration at lower load might not result in a correct
determination of the robot flexibility parameters.) The process runs the robot to
100 jointtarget poses and measures each corresponding measurement point
coordinate. The list of poses and measurements are fed into the CalibWare
calibration core and a set of robot compensation parameters are created.
For information on how to do this, see documentation for CalibWare.

Robot

controller

CalibWare

x

y

z
Measured positions

(Robot base frame)

Measurement

system

AbsAcc

parameters

Set (~100 points)

Robot joint angle

xx1900001203

Continues on next page
Application manual - Controller software OmniCore 185
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.6.1 ABB calibration process

Absolute Accuracy verification
The parameters are loaded onto the controller and activated. The robot is then run
to a set of 50 robtarget poses. Each pose is measured and the deviation from
nominal determined.
For information on how to do this, see documentation for CalibWare.
The requirements for acceptance vary between robot types, see typical performance
data in the product specification for the respective robot.

Compensation parameters and birth certificate
The compensation parameters are saved in the robot memory (see Compensation
parameters on page 188).
A birth certificate is created representing the Absolute Accuracy measurement
protocol for the calibration and verification sequence (see Birth certificate on
page 187).

186 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.6.1 ABB calibration process
Continued

3.1.6.2 Birth certificate

About the birth certificate
All Absolute Accuracy robots are shipped with a birth certificate. It represents the
Absolute Accuracy measurement protocol for the calibration and verification
sequence.
The birth certificate contains the following information:

• Robot information (robot type, serial number, version of Absolute Accuracy)
• Accuracy information (maximum, average and standard deviation for finepoint

error distribution)
• Tool information (TCP, mass, center of gravity)
• Description of measurement protocol (measurement and calibration system,

number of points, measurement point location)

Application manual - Controller software OmniCore 187
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.6.2 Birth certificate

3.1.6.3 Compensation parameters

About the compensation parameters
All Absolute Accuracy robots are shipped with a set of compensation parameters,
as part of the system parameters (configuration). As the resolver offset calibration
is integral in the Absolute Accuracy calibration, the resolver offset parameters are
also stored in the robot memory.

The compensation parameters
The compensation parameters are defined in the following configuration types:

• ROBOT_CALIB
• ARM_CALIB
• JOINT_CALIB
• PARALLEL_ARM_CALIB
• TOOL_INTERFACE
• MOTOR_CALIB

The type ROBOT_CALIB defines the top level of the calibration structure. The
instance r1_calib activates the Absolute Accuracy functionality by specifying the
flag -absacc. See Activate Absolute Accuracy on page 178.
The types ARM_CALIB, JOINT_CALIB, PARALLEL_ARM_CALIB, and
MOTOR_CALIB are reserved by the system and are only shown when the Absolute
Accuracy option is selected in theModify Installation dialog. The parameter values
can be changed by importing a new configuration file.
The compensation parameters are included in a backup, in the file moc.cfg.

188 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.6.3 Compensation parameters

3.1.7 Cell alignment

3.1.7.1 Overview

About cell alignment
The compensation parameters for the Absolute Accuracy robot are determined
from the physical base plate to the robot tool. For many applications this is enough,
the robot can be used as any other robot. However, it is common that Absolute
Accuracy robots are aligned to the coordinates in their cells. This section describes
this alignment procedure. For a more detailed description, see documentation for
CalibWare.

Alignment procedure
In order for the robot to be accurate with respect to the entire robot cell, it is
necessary to install the robot correctly. In summary, this involves:

DescriptionAction

Determine the relationship between the measurement
system and the fixture. SeeMeasure fixture alignment
on page 190.

Measure fixture alignment1

Determine the relationship between the measurement
system and the robot. See Measure robot alignment
on page 191.

Measure robot alignment2

Determine the relationship between, for example, the
robot and the fixture. See Frame relationships on
page 192.

Calculate frame relationships3

Determine the relationship between the robot tool and
other cell components. See Tool calibration on
page 193.

Calibrate tool4

Illustration

User (Fixture)

Measurement

system base

=Reference points

=Mounting pins
X

Y

Z

X

Y

Z

World

=Reference points

X

Y

Z

X

Y

Z

Robot base

=Robtargets

1.

1.

2.
3.

3.

Work object

transformation

Base frame

transformation

en0300000239

Application manual - Controller software OmniCore 189
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.7.1 Overview

3.1.7.2 Measure fixture alignment

About fixture alignment
A fixture is defined as a cell component that is associated with a particular
coordinate system. The interaction between the robot and the fixture requires an
accurate relationship in order to ensure Absolute Accuracy.
Absolute Accuracy fixtures must be equipped with at least three (preferably four)
reference points, each with clearly marked position information.

Fixture measurement procedure
The alignment of the fixture is done in the following steps:

1 Enter the reference point names and positions into the alignment software.
2 Measure the reference points and assign the same names.
3 Use the alignment software to match the reference to measured points and

determine the relationship frame. All measurement systems support this
form of transformation.

Illustration

User (Fixture)

Measurement

system base

1

2
3

4

=Reference points

X

Y

Z

X

Y

Z

en0300000237

Frame relationshipReference positionsMeasurement positions

1) RobotStudio work objectPos1: 100, 100, 100Pos1: 100, 100, 200
(0,0,-100,0,0,0)Pos2: 100, 200, 100Pos2: 100, 200, 200
(x,y,z,roll,pitch,yaw

Pos3: 200, 200, 100Pos3: 200, 200, 200

Pos4: 200, 100, 100Pos4: 200, 100, 200

190 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.7.2 Measure fixture alignment

3.1.7.3 Measure robot alignment

Select method
The relationship between the measurement system and the robot can be determined
in the following ways:

DescriptionAlignment procedure

The equivalent to the fixture alignment in which the physical
base pins are measured and aligned with respect to the ref-
erence positions detailed in the product manual for the re-
spective robot.

Alignment to physical base

Measuring several robot poses and letting the alignment
software determine the robot alignment.

Alignment to theoretical base

Alignment to physical base
The advantage of aligning the robot as a fixture is in its simplicity - the robot is
treated as another fixture in the cell and its base points measured accordingly.
The disadvantage is that small errors in the subsequent placement of the robot on
the pins can result is large TCP errors due to the reach of the robot (i.e. the
placement of the robot is not calibrated.)
In order to determine the reference point coordinates, it is necessary to consult
the product manual for that robot type.
Once the correct point have been measured, the alignment software is used to
determine the frame relationship between the measurement system and robot
base.

Alignment to theoretical base
The advantage of aligning the robot to a theoretical base is that any errors resulting
from mounting the robot can be eliminated. Furthermore, the alignment process
details the robot accuracy at the measured points, confirming correct Absolute
Accuracy functionality. The disadvantage is that a robot program must be created
(either manually or automatically from CalibWare) and the robot measured (ideally
with correct tool however the TCP can also be calibrated as a part of this procedure.)
Once the correct point is measured, the alignment software is used to determine
the frame relationship between the measurement system and robot base.

Application manual - Controller software OmniCore 191
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.7.3 Measure robot alignment

3.1.7.4 Frame relationships

About frame relationships
Once the relationships between the measurement system and all other cell
components are measured, the relationships between cell components can be
determined.
The relationship between the world coordinate system and the robot shall be stored
in the robot base. The relationship between the robot and the fixture shall be stored
in the workobject data type.
The measurement system is initially the active coordinate system as both world
and robot are measured relative to the measurement system.

Determine robot base
Use a standard measurement system software to determine the robot base in world
coordinates:

1 Set the world coordinate system to be active (the origin).
2 Read the coordinates of the robot base frame (now relative to the world).

The fixture relationship is similarly determined by setting the robot to be
active and reading the coordinates of the fixture frame.

192 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.7.4 Frame relationships

3.1.7.5 Tool calibration

About tool calibration
The Absolute Accuracy robot compensation parameters are calculated to be tool
independent. This allows any tool with a correctly pre-defined TCP to be connected
to the robot flange and used without requiring a tool re-calibration. In practice,
however, it is difficult to perform a correct TCP calibration with, for example, a
Coordinate Measurement Machine (CMM) as this does not take into account the
connection of the tool to the robot nor the tool flexibility.
Each tool should be calibrated on a regular basis to ensure optimal robot accuracy.

Tool calibration procedures
Suggested tool recalibration procedures are detailed as follows:

• SBCU (Single Beam Calibration Unit) such as the ABB BullsEye for
arc-welding or spot-welding applications.

• Geometry calibration such as the 4, 5 or 6 Point tool center point calibration
routine available in the controller. A measurement system can be used to
ensure that the single point used is accurate.

• RAPID tool calibration routines: MToolTCPCalib (calibration of TCP for moving
tool), SToolTCPCalib (calibration of TCP for stationary tool), MToolRotCalib
(calibration of rotation for moving tool), SToolRotCalib (calibration of TCP
and rotation for stationary tool.)

• Using theoretical data, for example from a CAD model.

Tip

As the tool load characteristics are used in the Absolute Accuracy models, it is
essential that all parameters be as accurate as possible. Use of Load Identification
is an efficient method of determining tool load characteristics.

Application manual - Controller software OmniCore 193
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.1.7.5 Tool calibration

3.2 Advanced Robot Motion 3100-1

About Advanced Robot Motion
The option Advanced Robot Motion gives you access to:

• Advanced Shape Tuning, see Advanced Shape Tuning [included in 3100-1]
on page 195.

• Changing Motion Process Mode from RAPID, see Motion Process Mode
[included in 3100-1] on page 203.

• Wrist Move, see Wrist Move [included in 3100-1] on page 211.

194 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.2 Advanced Robot Motion 3100-1

3.3 Advanced Shape Tuning [included in 3100-1]

3.3.1 About Advanced Shape Tuning

Purpose
The purpose of Advanced Shape Tuning is to reduce the path deviation caused
by joint friction of the robot.
Advanced Shape Tuning is useful for low speed cutting (10-100 mm/s) of, for
example, small circles. Effects of robot joint friction can cause path deviation of
typically 0.5 mm in these cases. By tuning parameters of a friction model in the
controller, the path deviation can be reduced to the repeatability level of the robot,
for example, 0.1 mm for a medium sized robot.

What is included
Advanced Shape Tuning is included in the RobotWare option Advanced robot
motion and gives you access to:

• Instructions FricIdInit, FricIdEvaluate and FricIdSetFricLevels

that automatically optimize the joint friction model parameters for a
programmed path.

• The system parameters Friction FFW On, Friction FFW level and Friction
FFW Ramp for manual tuning of the joint friction parameters.

• The tune types tune_fric_lev and tune_fric_ramp that can be used
with the instruction TuneServo.

Basic approach
This is a brief description of how Advanced Shape Tuning is most commonly used:

1 Set system parameter Friction FFW On to TRUE. See System parameters
on page 200.

2 Perform automatic tuning of the joint friction levels using the instructions
FricIdInit and FricIdEvaluate. See Automatic friction tuning on
page 196.

3 Compensate for the friction using the instruction FricIdSetFricLevels.

Application manual - Controller software OmniCore 195
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.1 About Advanced Shape Tuning

3.3.2 Automatic friction tuning

About automatic friction tuning
A robot’s joint friction levels are automatically tuned with the instructions
FricIdInit and FricIdEvaluate. These instructions will tune each joint’s
friction level for a specific sequence of movements.
The automatically tuned levels are applied for friction compensation with the
instruction FricIdSetFricLevels.

Program execution
To perform automatic tuning for a sequence of movements, the sequence must
begin with the instruction FricIdInit and end with the instruction
FricIdEvaluate. When program execution reaches FricIdEvaluate, the robot
will repeat the movement sequence until the best friction level for each joint axis
is found. Each iteration consists of a backward and a forward motion, both following
the programmed path. Typically the sequence has to be repeated approximately
20-30 times, in order to iterate to correct joint friction levels.
If the program execution is stopped in any way while the program pointer is on the
instruction FricIdEvaluate and then restarted, the results will be invalid. After
a stop, friction identification must therefore be restarted from the beginning.
Once the correct friction levels are found they have to be set with the instruction
FricIdSetFricLevels, otherwise they will not be used. Note that the friction
levels are tuned for the particular movement between FricIdInit and
FricIdEvaluate. For movements in another region in the robot’s working area,
a new tuning is needed to obtain the correct friction levels.
For a detailed description of the instructions, see Technical reference
manual - RAPID Instructions, Functions and Data types.

Limitations
There are the following limitations for friction tuning:

• Friction tuning cannot be combined with synchronized movement. That is,
SyncMoveOn is not allowed between FricIdInit and FricIdEvaluate.

• The movement sequence for which friction tuning is done must begin and
end with a finepoint. If not, finepoints will automatically be inserted during
the tuning process.

• Automatic friction tuning works only for TCP robots.
• Automatic joint friction tuning can only be done for one robot at a time.
• Tuning can be made to a maximum of 500%. If that is not enough, set a higher

value for the parameter Friction FFW Level, see Starting with an estimated
value on page 201.

• It is not possible to view any test signals with TuneMaster during automatic
friction tuning.

• The movement sequence between FricIdInit and FricIdEvaluate

cannot be longer than 10 seconds.

Continues on next page
196 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.2 Automatic friction tuning

Note

To use Advanced Shape Tuning, the parameter Friction FFW On must be set to
TRUE.

Example
This example shows how to program a cutting instruction that encapsulates the
friction tuning. When the instruction is run the first time, without calculated friction
parameters, the friction tuning is done. During the tuning process, the robot will
repeatedly move back and forth along the programmed path. Approximately 25
iterations are needed.
At all subsequent runs the friction levels are set to the tuned values identified in
the first run. By using the instruction CutHole, the friction can be tuned individually
for each hole.

PERS num friction_levels1{6} := [9E9,9E9,9E9,9E9,9E9,9E9];

PERS num friction_levels2{6} := [9E9,9E9,9E9,9E9,9E9,9E9];

CutHole p1,20,v50,tool1,friction_levels1;

CutHole p2,15,v50,tool1,friction_levels2;

PROC CutHole(robtarget Center, num Radius, speeddata Speed, PERS
tooldata Tool, PERS num FricLevels{*})

VAR bool DoTuning := FALSE;

IF (FricLevels{1} >= 9E9) THEN

! Variable is uninitialized, do tuning

DoTuning := TRUE;

FricIdInit;

ELSE

FricIdSetFricLevels FricLevels;

ENDIF

! Execute the move sequence

MoveC p10, p20, Speed, z0, Tool;

MoveC p30, p40, Speed, z0, Tool;

IF DoTuning THEN

FricIdEvaluate FricLevels;

ENDIF

ENDPROC

Note

A real program would include deactivating the cutting equipment before the
tuning phase.

Application manual - Controller software OmniCore 197
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.2 Automatic friction tuning

Continued

3.3.3 Manual friction tuning

Overview
It is possible to make a manual tuning of a robot's joint friction (instead of automatic
friction tuning). The friction level for each joint can be tuned using the instruction
TuneServo. How to do this is described in this section.
There is usually no need to make changes to the friction ramp.

Note

To use Advanced Shape Tuning, the parameter Friction FFW On must be set to
TRUE.

Tune types
A tune type is used as an argument to the instruction TuneServo. For more
information, see tunetype in Technical reference manual - RAPID Instructions,
Functions and Data types.
There are two tune types that are used expressly for Advanced Shape Tuning:

DescriptionTune type

By calling the instruction TuneServo with the argument
TUNE_FRIC_LEV the friction level for a robot joint can be adjusted
during program execution. A value is given in percent (between 1
and 500) of the friction level defined by the parameter Friction FFW
Level.

TUNE_FRIC_LEV

By calling the instruction TuneServo with the argument
TUNE_FRIC_RAMP the motor shaft speed at which full friction com-
pensation is reached can be adjusted during program execution. A
value is given in percent (between 1 and 500) of the friction ramp
defined by the parameter Friction FFW Ramp.

TUNE_FRIC_RAMP

There is normally no need to tune the friction ramp.

Configure friction level
The friction level is set for each robot joint. Perform the following steps for one
joint at a time:

Action

Test the robot by running it through the most demanding parts of its tasks (the most
advanced shapes). If the robot shall be used for cutting, then test it by cutting with the
same tool as at manufacturing.

1

Observe the path deviations and test if the joint friction levels need to be increased
or decreased.

Tune the friction level with the RAPID instruction TuneServo and the tune type
TUNE_FRIC_LEV. The level is given in percent of the Friction FFW Level value.

2

Example: The instruction for increasing the friction level with 20% looks like this:
TuneServo MHA160R1, 1, 120 \Type:= TUNE_FRIC_LEV;

Repeat step 1 and 2 until you are satisfied with the path deviation.3

Continues on next page
198 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.3 Manual friction tuning

Action

The final tuning values can be transferred to the system parameters.4
Example: The Friction FFW Level is 0.5 and the final tune value (TUNE_FRIC_LEV) is
120%. Set Friction FFW Level to 0.6 and tune value to 100% (default value), which is
equivalent.

Tip

Tuning can be made to a maximum of 500%. If that is not enough, set a higher
value for the parameter Friction FFWLevel, seeSetting tuning system parameters
on page 201.

Application manual - Controller software OmniCore 199
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.3 Manual friction tuning

Continued

3.3.4 System parameters

3.3.4.1 System parameters

About the system parameters
This is a brief description of each parameter in the optionAdvanced Shape Tuning.
For more information, see the respective parameter in Technical reference
manual - System parameters.

Friction Compensation / Control Parameters
These parameters belong to the type Friction Compensation in the topic Motion,
except for the robots IRB 1400 and IRB 1410 where they belong to the type Control
Parameters in the topic Motion.

DescriptionParameter

Advanced Shape Tuning is active when Friction FFW On is set to
TRUE.

Friction FFW On

Friction FFW Level is the friction level for the robot joint. See illustra-
tion below.

Friction FFW Level

Friction FFW Ramp is the speed of the robot motor shaft, at which
the friction has reached the friction level defined by Friction FFW
Level. See illustration below.

Friction FFW Ramp

There is normally no need to make changes to Friction FFW Ramp.

Illustration

en0900000117

200 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.4.1 System parameters

3.3.4.2 Setting tuning system parameters

Automatic tuning rarely requires changes in system parameters
For automatic tuning, if the friction levels are saved in a persistent array, the tuning
is maintained after a power failure. The automatic tuning can also be used to set
different tuning levels for different robot movement sequences, which cannot be
achieved with system parameters. When using automatic tuning, there is no need
to change the system parameters unless the default values are very much off, see
Starting with an estimated value on page 201.

Transfer tuning to system parameters
When using manual tuning, the tuning values are reset to default (100%) at power
failure. System parameter settings are, however, permanent.
If a temporary tuning is made, that is only valid for a part of the program execution,
it should not be transferred.
To transfer the friction level tuning value (TUNE_FRIC_LEV) to the parameter
Friction FFW Level follow these steps:

Action

In RobotStudio, open the Configuration Editor, Motion topic, and select the type
Friction comp (except for the robots IRB 1400 and IRB 1410 where they belong to the
type Control parameters).

1

Multiply Friction FFW Level with the tuning value. Set this value as the new Friction
FFW Level and set the tuning value (TUNE_FRIC_LEV) to 100%.

2

Example: The Friction FFW Level is 0.5 and the final tune value (TUNE_FRIC_LEV) is
120%. Set Friction FFW Level to 0.6 (1.20x0.5) and the tuning value to 100% (default
value), which is equivalent.

Restart the controller for the changes to take effect.3

Starting with an estimated value
The parameter Friction FFW Level will be the starting value for the tuning. If this
value is very far from the correct value, tuning to the correct value might be
impossible. This is unlikely to happen, since Friction FFW Level is by default set
to a value approximately correct for most situations.
If the Friction FFW Level value, for some reason, is too far from the correct value,
it can be changed to an new estimated value.

Action

In RobotStudio, open the Configuration Editor, Motion topic, and select the type
Friction comp (except for the robots IRB 1400 and IRB 1410 where they belong to the
type Control parameters).

1

Set the parameter Friction FFW Level to an estimated value. Do not set the value 0
(zero), because that will make tuning impossible.

2

Restart the controller for the changes to take effect.3

Application manual - Controller software OmniCore 201
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.4.2 Setting tuning system parameters

3.3.5 RAPID components

About the RAPID components
This is an overview of all instructions, functions, and data types in Advanced Shape
Tuning.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types.

Instructions

DescriptionInstructions

Initiate friction identificationFricIdInit

Evaluate friction identificationFricIdEvaluate

Set friction levels after friction identificationFricIdSetFricLevels

Functions
Advanced Shape Tuning includes no functions.

Data types
Advanced Shape Tuning includes no data types.

202 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.3.5 RAPID components

3.4 Motion Process Mode [included in 3100-1]

3.4.1 About Motion Process Mode

Purpose
The purpose of Motion Process Mode is to simplify application specific tuning, i.e.
to optimize the performance of the robot for a specific application.
For most applications the default mode is the best choice.

Tip

If the default mode does not give sufficient accuracy, first test to use Accuracy
mode, and if that is not sufficient, use Low speed accuracy.

Available motion process modes
A motion process mode consists of a specific set of tuning parameters for a robot.
Each tuning parameter set, that is each mode, optimizes the robot tuning for a
specific class of applications.
There following modes are predefined:

• Optimal cycle time mode – this mode gives the shortest possible cycle time
and is normally the default mode.

• Accuracy mode – this mode improves path accuracy. The cycle time will be
slightly increased compared to Optimal cycle time mode.

• Low speed accuracy mode – this mode improves path accuracy. The cycle
time will be slightly increased compared to Accuracy mode.

• Low speed stiff mode - this mode is recommended for contact applications
where maximum servo stiffness is important. Could also be used in some
low speed applications, where a minimum of path vibrations is desired. The
cycle time will be increased compared to Low speed accuracy mode.

• Press tending mode – Changes the Kv Factor, Kp Factor and Ti Factor in
order to mitigate tool vibrations. This mode is primarily intended for use in
press tending applications where flexible grippers with a large extension in
the y-direction are used.

• Collaborative mode – This mode is recommended for collaborative
applications where robot should run smoothly. The cycle time will be
increased compared to optimal cycle time mode. This will only have any
effect on GoFa CRB 15000.

There are also four modes available for application specific user tuning:
• MPM User mode 1 – 4

Selection of mode
The default mode is automatically selected and can be changed by changing the
system parameter Use Motion Process Mode for type Robot.

Continues on next page
Application manual - Controller software OmniCore 203
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.1 About Motion Process Mode

Changing the Motion Process Mode from RAPID is only possible if the option
Advanced Robot Motion is installed. The mode can only be changed when the
robot is standing still, otherwise a fine point is enforced.
The following example shows a typical use of the RAPID instruction
MotionProcessModeSet.

MotionProcessModeSet OPTIMAL_CYCLE_TIME_MODE;

! Do cycle-time critical movement

MoveL *, vmax, ...;

...

MotionProcessModeSet ACCURACY_MODE;

! Do cutting with high accuracy

MoveL *, v50, ...;

...

Limitations
• The Motion Process Mode concept is currently available for all six- and

seven-axes robots except paint robots with TrueMove1.
• The Mounting Stiffness Factor parameters are only available for the following

robots:
IRB 120, IRB 140, IRB 1200, IRB 1520, IRB 1600, IRB 2600, IRB 4600, IRB
6620 (not LX), IRB 6640, IRB 6700.

• For IRB 1410, only the Accset and the geometric accuracy parameters are
available.

• The following robot models do not support the use of World Acc Factor (i.e.
only World Acc Factor = -1 is allowed):
IRB 340, IRB 360, IRB 540, IRB 1400, IRB 1410

204 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.1 About Motion Process Mode
Continued

3.4.2 User-defined modes

Available tune parameters
If a more specific tuning is needed, some tuning parameters can be modified in
each motion process mode. The predefined modes and the user modes can all be
modified. In this way, the user can create a specific tuning for a specific application.
The following list contains a short description of the available tune parameters.

• Use Motion Process Mode Type - selects predefined parameters for a user
mode.

• Accset Acc Factor – changes acceleration
• Accset Ramp Factor – changes acceleration ramp
• Accset Fine Point Ramp Factor – changes deceleration ramp in fine points
• Joint Acc Factor - changes acceleration for a specific joint.
• World Acc Factor - activates dynamic world acceleration limitation if positive,

typical value is 1, deactivated if -1.
• Geometric Accuracy Factor - improves geometric accuracy if reduced.
• Dh Factor – changes path smoothness (effective system bandwidth)
• Df Factor – changes the predicted resonance frequency for a particular axis
• Kp Factor – changes the equivalent gain of the position controller for a

particular axis
• Kv Factor – changes the equivalent gain of the speed controller for a particular

axis
• Ti Factor – changes the integral time of the controller for a particular axis
• Mounting Stiffness Factor X – describes the stiffness of the robot foundation

in x direction
• Mounting Stiffness Factor Y – describes the stiffness of the robot foundation

in y direction
• Mounting Stiffness Factor Z – describes the stiffness of the robot foundation

in z direction
For a detailed description, see Motion Process Mode in Technical reference
manual - System parameters.

Tuning parameters from RAPID
Most parameters can also be changed using the TuneServo and AccSet

instructions.

Note

All parameter settings are relative adjustments of the predefined parameter
values. Although it is possible to combine the use of motion process modes and
TuneServo/Accset instructions, it is recommended to choose either motion
process modes or TuneServo/AccSet.

Continues on next page
Application manual - Controller software OmniCore 205
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.2 User-defined modes

Example 1
Relative adjustment of acceleration = [Predefined AccSet Acc Factor] * [AccSet
Acc Factor] * [AccSet instruction acceleration factor / 100]

Example 2
Relative adjustment of Kv = [Predefined Kv Factor] * [Kv Factor] * [Tune value of
TuneServo(TYPE_KV) instruction / 100]

Predefined parameter values
The predefined parameter values for each mode varies for different robot types.
Generally, all predefined parameters are set to 1.0 for Optimal cycle time mode.
For Low speed accuracy mode and Low speed stiff mode, the AccSet and Dh
parameters are lowered for a smoother movement and a more accurate path, and
the Kv Factor, Kp Factor, and Ti Factor are changed for higher servo stiffness.
For some robots, it might not be possible to increase the Kv Factor in Low speed
accuracy mode and Low speed stiff mode. Always be careful and be observant for
increased motor noise level when adjustingKv Factor and do not use higher values
than needed for fulfilling the application requirement. A Kp Factor which is too
high, or a Ti Factor which is too low, can also increase vibrations due to mechanical
resonances.
Accuracy Mode uses a dynamic world acceleration limitation (World Acc Factor)
and increased geometric accuracy (Geometric Accuracy Factor) to improve the
path accuracy.
The Df Factor and the Mounting Stiffness Factors are always set to 1.0 in the
predefined modes, since the optimal values of these parameters depends the
specific installation, for example, the stiffness of the foundation on which the robot
is mounted. These parameters can be optimized using TuneMaster. More
information can be found in the TuneMaster application. Also note the limitations
of Mounting Stiffness Factor.

WARNING

Incorrect setting of the Motion Process Mode parameters can cause oscillating
movements or torques that can damage the robot.

206 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.2 User-defined modes
Continued

3.4.3 General information about robot tuning

Minimizing cycle time
For best possible cycle time, the motion process mode Optimal cycle time mode
should be used. This mode is normally the default mode. The user only needs to
define the tool load, payload, and arm loads if any. Once the robot path has been
programmed, the ABB QuickMove motion technology automatically computes the
optimal accelerations and speeds along the path. This results in a time-optimal
path with the shortest possible cycle time. Hence, no tuning of acceleration is
needed. The only way to improve the cycle time is to change the geometry of the
path or to work in another region of the work space. This type of optimization, if
needed, can be performed by simulation in RobotStudio.

Increasing path accuracy and reducing vibrations
For most applications, the Optimal cycle time mode will result in a satisfactory
behavior in terms of path accuracy and vibrations. This is due to theABB TrueMove
motion technology. However, there are applications where the accuracy needs to
be improved by modifying the tuning of the robot. This tuning has previously been
performed by using the TuneServo and AccSet instructions in the RAPID program.
The concept of motion process modes will simplify this application specific tuning
and the four predefined modes should be useful in many cases with no further
adjustments needed.
Here follows some general advice for solving accuracy problems, assuming that
the default choice Optimal cycle time mode has been tested and that accuracy
problems have been noticed:

1 Verify that tool load, payload, and arm loads are properly defined.
2 Inspect tool and process equipment attached to the robot arms. Make sure

that everything is properly fastened and that rigidity of the tool is adequate.
3 Inspect the foundation on which the robot is mounted, see Compensating

for foundation flexibility on page 207.

Compensating for foundation flexibility
If the foundation does not fulfill the stiffness requirement of the robot product
manual, then the foundation flexibility should be compensated for. See section
Requirements on foundation, Minimum resonance frequency in the robot product
manual.
This is performed by Df Factor for axis 1 and 2 or Mounting Stiffness Factor
depending on robot type, see Limitations on page 210.

Continues on next page
Application manual - Controller software OmniCore 207
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.3 General information about robot tuning

TuneMaster is used for finding the optimal value of Df Factor / Mounting Stiffness
Factor. The obtained Df Factor / Mounting Stiffness Factor is then defined for the
Motion Process Modes used.

Note

A foundation that does not fulfill the requirements always impairs the accuracy
to some extent, even if the described compensation is used. If the foundation
rigidity is very low, there might not be possible to solve the problem using Df
Factor / Mounting Stiffness Factor.
In this case, the foundation must be improved or any of the solutions below used,
for example, Optimal cycle time mode with a low Dh Factor, Accset Acc Factor,
or Accset Fine Point Ramp Factor depending on the application.

WARNING

Incorrect tuning for a very low mounting stiffness can cause oscillating
movements or torques that can damage the robot.

If accuracy still needs to be improved
• For applications with high demands on path accuracy, for example cutting,

Advanced Shape Tuning and Accuracy mode/Low speed accuracy mode
should be used. The choice of motion mode depends both on the robot type
and the specific application. In general, Accuracy mode is recommended for
small and medium size robots (up to IRB 2400/2600) and Low speed accuracy
mode is recommended for larger robots.

• If the path accuracy still needs improvement, the accuracy modes can be
adjusted with the tune parameters, some examples:

- Tuning of Accuracy mode for improved accuracy:
1) Reduce World Acc Factor, for example from 1 to 0.5.
2) Reduce Dh Factor to 0.5 or lower. Note that a low value of Dh factor
can change the corner zones at high speed.

- Tuning of Low speed accuracy mode for improved accuracy:
1) Set World Acc Factor to 1, and set Geometric Accuracy Factor to
0.1.
2) Reduce Dh Factor to 0.5 or lower.

• The programmed speed must sometimes be reduced for best possible
accuracy, e.g. in cutting applications. For example, a circle with radius 1 mm
should not be programmed with a higher speed than 20 mm/s.

• For contact applications, for example milling and pre-machining, Low speed
stiff mode is recommended. This mode can also be useful for large robots
in some low speed applications (up to 100 mm/s) where a minimum of path
vibrations is required, for example below 0.1 mm. Note that this mode has a
very stiff servo tuning and that there may be cases where the Kv Factor
needs to be reduced due to motor vibrations and noise.

Continues on next page
208 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.3 General information about robot tuning
Continued

• If overshoots and vibrations in fine points needs to be reduced. Use Optimal
cycle time mode and decrease the value of Accset Fine Point Ramp Factor
or Dh Factor until the problem is solved.

• If accuracy problems occur when starting or ending reorientation. Define a
new zone with increased pzone_ori and pzone_eax. These should always
have the same value, even if there are no external axes in the system. Also
increase zone_ori. Always strive for smooth reorientations when
programming.

• Finally, if the cycle time needs to be reduced after the tuning for accuracy is
finished. Use different motion process modes in different sections of the
RAPID program.

Application manual - Controller software OmniCore 209
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.3 General information about robot tuning

Continued

3.4.4 Additional information

Motion Process Mode compared to TuneServo and AccSet
Motion process modes simplifies application specific tuning and makes it possible
to define the tuning by system parameters instead of the RAPID program.
In general, motion process modes should be the first choice for solving accuracy
problems. However, application specific tuning can still be performed using the
TuneServo and AccSet instructions in the RAPID program.
There are a few situations where TuneServo and AccSetmight be a better choice.
One example of this is if an acceleration reduction in a section of the RAPID
program solves the accuracy problem and the cycle time is to be optimized. In this
case it might be better to use AccSet which can be changed without fine point
whereas change of motion process mode requires a fine point.

Limitations
• The Motion Process Mode concept is currently available for all six- and

seven-axes robots except paint robots.
• The Mounting Stiffness Factor parameters are only available for the following

robots:
IRB 120, IRB 140, IRB 1200, IRB 1520, IRB 1600, IRB 2600, IRB 4600, IRB
6620 (not LX), IRB 6640, IRB 6700.

• For IRB 1410, only the Accset and the geometric accuracy parameters are
available.

• The following robot models do not support the use of World Acc Factor (i.e.
only World Acc Factor = -1 is allowed):
IRB 340, IRB 360, IRB 540, IRB 1400, IRB 1410

Related information

SeeFor information about

Technical referencemanual - System paramet-
ers

Configuration of Motion Process Mode
parameters.

Technical reference manual - RAPID Instruc-
tions, Functions and Data types

RAPID instructions:
• AccSet - Reduces the acceleration
• MotionProcessModeSet - Set mo-

tion process mode
• TuneServo - Tuning servos

210 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.4.4 Additional information

3.5 Wrist Move [included in 3100-1]

3.5.1 Introduction to Wrist Move

Purpose
The purpose ofWrist Move is to improve the path accuracy when cutting geometries
with small dimensions. For geometrical shapes like small holes, friction effects
from the main axes (1-3) of the robot often degrade the visual appearance of the
shape. The key idea is that instead of controlling the robot's TCP, a wrist movement
controls the point of intersection between the laser beam (or water jet or routing
spindle, etc) and the cutting plane. For controlling the point of intersection, only
two wrist axes are needed. Instead of using all axes of the robot, only two wrist
axes are used, thereby minimizing the friction effects on the path. Which wrist axis
pair to be used is decided by the programmer.

Using Wrist Move
Wrist Move is included in the RobotWare option Advanced robot motion.
Wrist Move is used together with the RAPID instruction CirPathMode and
movement instructions for circular arcs, that is, MoveC, TrigC, CapC etc. The wrist
movement mode is activated by the instruction CirPathMode together with one
of the flags Wrist45, Wrist46, or Wrist56. With this mode activated, all
subsequent MoveC instructions will result in a wrist movement. To go back to
normal MoveC behavior, then CirPathMode has to be set with a flag other than
Wrist45, Wrist46, and Wrist56, for example, PathFrame.

Note

During a wrist movement, the TCP height above the surface will vary. This is an
unavoidable consequence of using only two axes. The height variation will depend
on the robot position, the tool definition, and the radius of the circular arc. The
larger the radius, the larger the height variation will be. Due to the height variation
it is recommended that the movement is run at a very low speed the first time to
verify that the height variation does not become too large. Otherwise it is possible
that the cutting tool collides with the surface being cut.

Limitations
The Wrist Move option cannot be used if:

• The work object is moving
• The robot is mounted on a track or another manipulator that is moving

The Wrist Move option is only supported for robots running QuickMove, second
generation.
The tool will not remain at right angle against the surface during the cutting. As a
consequence, the holes cut with this method will be slightly conical. Usually this
will not be a problem for thin plates, but for thick plates the conicity will become
apparent.

Continues on next page
Application manual - Controller software OmniCore 211
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.1 Introduction to Wrist Move

The height of the TCP above the surface will vary during the cut. The height variation
will increase with the size of the shape being cut. What limits the possible size of
the shape are therefore, beside risk of collision, process characteristics like focal
length of the laser beam or the water jet.
WristMove cannot be used on robots with non-spherical wrist, for example, GoFa
or YuMi

212 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.1 Introduction to Wrist Move
Continued

3.5.2 Cut plane frame

Defining the cut plane frame
Crucial to the wrist movement concept is the definition of the cut plane frame. This
frame provides information about position and orientation of the object surface.
The cut plane frame is defined by the robot's starting position when executing a
MoveC instruction. The frame is defined to be equal to the tool frame at the starting
position. Note that for a sequence of MoveC instructions, the cut plane frame stays
the same during the whole sequence.

Illustration, cut plane
The left illustration shows how the cut plane is defined, and the right illustration
shows the tool- and cut plane frames during cutting.

en0900000118

Prerequisites
Due to the way the cut plane frame is defined, the following must be fulfilled at the
starting position:

• The tool must be at right angle to the surface
• The z-axis of the tool must coincide with the laser beam or water jet
• The TCP must be as close to the surface as possible

If the first two requirements are not fulfilled, then the shape of the cut contour will
be affected. For example, a circular hole would look more like an ellipse. The third
requirement is normally easy to fulfill as the TCP is often defined to be a few mm
in front of, for example, the nozzle of a water jet. However, if the third requirement
is not fulfilled, then it will only affect the radius of the resulting circle arc. That is,
the radius of the cut arc will not agree with the programmed radius. For a linear
segment, the length will be affected.

Tip

In the jog window of the FlexPendant there is a button for automatic alignment
of the tool against a chosen coordinate frame. This functionality can be used to
ensure that the tool is at a right angle against the surface when starting the wrist
movement.

Continues on next page
Application manual - Controller software OmniCore 213
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.2 Cut plane frame

Tip

Wrist movement is not limited to circular arcs only: If the targets of MoveC are
collinear, then a straight line will be achieved.

214 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.2 Cut plane frame
Continued

3.5.3 RAPID components

Instruction
This is a brief description of the instruction used in Wrist Move. For more
information, see the description of the instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionsInstruction

CirPathMode makes it possible to select different modes to
reorientate the tool during circular movements.

CirPathMode

The arguments Wrist45, Wrist46, and Wrist56 are used
specifically for the Wrist Move option.

Application manual - Controller software OmniCore 215
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.3 RAPID components

3.5.4 RAPID code, examples

Basic example
This example shows how to do two circular arcs, first using axes 4 and 5, and then
using axes 5 and 6. After the two arcs, wrist movement is deactivated by
CirPathMode.

! This position will define the cut plane frame

MoveJ p10, v100, fine, tWaterJet;

CirPathMode \Wrist45;

MoveC p20, p30, v50, z0, tWaterJet;

! The cut-plane frame remains the same in a sequence of MoveC

CirPathMode \Wrist56;

MoveC p40, p50, v50, fine, tWaterJet;

! Deactivate Wrist Movement, could use \ObjectFrame

! or \CirPointOri as well

CirPathMode \PathFrame;

Advanced example
This example shows how to cut a slot with end radius R and length L+2R, using
wrist movement. See Illustration, pSlot and wSlot on page 217. The slot both
begins and ends at the position pSlot, which is the center of the left semi-circle.
To avoid introducing oscillations in the robot, the cut begins and ends with
semi-circular lead-in and lead-out paths that connect smoothly to the slot contour.
All coordinates are given relative the work object wSlot.

! Set the dimensions of the slot

R := 5;

L := 30;

! This position defines the cut plane frame, it must be normal

! to the surface

MoveJ pSlot, v100, z1, tLaser, \wobj := wSlot;

CirPathMode \Wrist45;

! Lead-in curve

MoveC Offs(pSlot, R/2, R/2, 0), Offs(pSlot, 0, R, 0), v50, z0,
tLaser, \wobj := wSlot;

! Left semi-circle

MoveC Offs(pSlot, -R, 0, 0), Offs(pSlot, 0, -R, 0), v50, z0, tLaser,
\wobj := wSlot;

! Lower straight line, circle point passes through the mid-point

! of the line

MoveC Offs(pSlot, L/2, -R, 0), Offs(pSlot, L, -R, 0), v50, z0,
tLaser, \wobj := wSlot;

Continues on next page
216 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.4 RAPID code, examples

! Right semi-circle

MoveC Offs(pSlot, L+R, 0, 0), Offs(pSlot, L, R, 0), v50, z0, tLaser,
\wobj := wSlot;

! Upper straight line, circle point passes through the mid-point

! of the line

MoveC Offs(pSlot, L/2, R, 0), Offs(pSlot, 0, R, 0), v50, z0, tLaser,
\wobj := wSlot;

! Lead-out curve back to the starting point

MoveC Offs(pSlot, -R/2, R/2, 0), pSlot, v50, z1, tLaser, \wobj :=
wSlot;

Deactivate Wrist Movement

CirPathMode \ObjectFrame;

Illustration, pSlot and wSlot

wSlot

pSlot

xx0900000111

Application manual - Controller software OmniCore 217
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.4 RAPID code, examples

Continued

3.5.5 Troubleshooting

Unexpected cut shape
If the cut shape is not the expected, then check the following:

• The tool z-axis coincides with the laser beam or the water jet
• The tool z-axis is at right angle to the surface at the starting position of the

first MoveC
• If you have the option Advanced Shape Tuning, then try tuning the friction

for the involved wrist axes.

Mismatching radius
If the radius of the circular arc does not agree with the programmed radius, then
check that the TCP is as close to the surface as possible at the starting position.

Impossible movement with chosen axis pair
If the movement is not possible with the selected axis pair, then try activating
another pair by using one of the flags Wrist45, Wrist46, or Wrist56. As a last
resort, try reaching the starting position with another robot configuration.

218 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

3 Motion Performance
3.5.5 Troubleshooting

4 Motion Supervision
4.1 World Zones [3106-1]

4.1.1 Overview of World Zones

Purpose
The purpose of World Zones is to stop the robot or set an output signal if the robot
is inside a special user-defined zone. Here are some examples of applications:

• When two robots share a part of their respective work areas. The possibility
of the two robots colliding can be safely eliminated by World Zones
supervision.

• When a permanent obstacle or some temporary external equipment is located
inside the robot’s work area. A forbidden zone can be created to prevent the
robot from colliding with this equipment.

• Indication that the robot is at a position where it is permissible to start program
execution from a Programmable Logic Controller (PLC).

A world zone is supervised during robot movements both during program execution
and jogging. If the robot’s TCP reaches the world zone or if the axes reaches the
world zone in joints, the movement is stopped or a digital output signal is set.

WARNING

For safety reasons, this software shall not be used for protection of personnel.
Use hardware protection equipment for that.

What is included
The RobotWare option World Zones gives you access to:

• instructions used to define volumes of various shapes
• instructions used to define joint zones in coordinates for axes
• instructions used to define and enable world zones

Basic approach
This is the general approach for setting up World Zones. For a more detailed
example of how this is done, see Code examples on page 223.

1 Declare the world zone as stationary or temporary.
2 Declare the shape variable.
3 Define the shape that the world zone shall have.
4 Define the world zone (that the robot shall stop or that an output signal shall

be set when reaching the volume).

Continues on next page
Application manual - Controller software OmniCore 219
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.1.1 Overview of World Zones

Limitations
Supervision of a volume only works for the TCP. Any other part of the robot may
pass through the volume undetected. To be certain to prevent this, you can
supervise a joint world zone (defined byWZLimJointDef or WZHomeJointDef).
A variable of type wzstationary or wztemporary can not be redefined. They
can only be defined once (with WZLimSup or WZDOSet).
World Zones supervision is not accessible when lead-through is active.

220 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.1.1 Overview of World Zones
Continued

4.1.2 RAPID components

Data types
This is a brief description of each data type in World Zones. For more information,
see respective data type in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionData type

wztemporary is used to identify a temporary world zone and can be
used anywhere in the RAPID program.

wztemporary

Temporary world zones can be disabled, enabled again, or erased
via RAPID instructions. Temporary world zones are automatically
erased when a new program is loaded or when program execution
start from the beginning in the MAIN routine.

wzstationary is used to identify a stationary world zone and can
only be used in an event routine connected to the event POWER ON.
For information on defining event routines, seeOperatingmanual - Om-
niCore.

wzstationary

A stationary world zone is always active and is reactivated by a restart
(switch power off then on, or change system parameters). It is not
possible to disable, enable or erase a stationary world zone via
RAPID instructions.
Stationary world zones shall be used if security is involved.

shapedata is used to describe the geometry of a world zone.shapedata
World zones can be defined in 4 different geometrical shapes:

• a straight box, with all sides parallel to the world coordinate
system

• a cylinder, parallel to the z axis of the world coordinate system
• a sphere
• a joint angle area for the robot axes and/or external axes

Instructions
This is a brief description of each instruction in World Zones. For more information,
see respective instruction in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionInstruction

WZBoxDef is used to define a volume that has the shape of a straight
box with all its sides parallel to the axes of the world coordinate sys-
tem. The definition is stored in a variable of type shapedata.

WZBoxDef

The volume can also be defined as the inverse of the box (all volume
outside the box).

WZCylDef is used to define a volume that has the shape of a cylinder
with the cylinder axis parallel to the z-axis of the world coordinate
system. The definition is stored in a variable of type shapedata.

WZCylDef

The volume can also be defined as the inverse of the cylinder (all
volume outside the cylinder).

WZSphDef is used to define a volume that has the shape of a sphere.
The definition is stored in a variable of type shapedata.

WZSphDef

The volume can also be defined as the inverse of the sphere (all
volume outside the sphere).

Continues on next page
Application manual - Controller software OmniCore 221
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.1.2 RAPID components

DescriptionInstruction

WZLimJointDef is used to define joint coordinate for axes, to be
used for limitation of the working area. Coordinate limits can be set
for both the robot axes and external axes.

WZLimJointDef

For each axis WZLimJointDef defines an upper and lower limit. For
rotational axes the limits are given in degrees and for linear axes the
limits are given in mm.
The definition is stored in a variable of type shapedata.

WZHomeJointDef is used to define joint coordinates for axes, to be
used to identify a position in the joint space. Coordinate limits can be
set for both the robot axes and external axes.

WZHomeJointDef

For each axis WZHomeJointDef defines a joint coordinate for the
middle of the zone and the zones delta deviation from the middle. For
rotational axes the coordinates are given in degrees and for linear
axes the coordinates are given in mm.
The definition is stored in a variable of type shapedata.

WZLimSup is used to define, and enable, stopping the robot with an
error message when the TCP reaches the world zone. This supervision
is active both during program execution and when jogging.

WZLimSup

When calling WZLimSup you specify whether it is a stationary world
zone, stored in a wzstationary variable, or a temporary world zone,
stored in a wztemporary variable.

WZDOSet is used to define, and enable, setting a digital output signal
when the TCP reaches the world zone.

WZDOSet

When callingWZDOSet you specify whether it is a stationary world
zone, stored in a wzstationary variable, or a temporary world zone,
stored in a wztemporary variable.

WZDisable is used to disable the supervision of a temporary world
zone.

WZDisable

WZEnable is used to re-enable the supervision of a temporary world
zone.

WZEnable

A world zone is automatically enabled on creation. Enabling is only
necessary after it has been disabled with WZDisable.

WZFree is used to disable and erase a temporary world zone.WZFree

Functions
World Zones does not include any RAPID functions.

222 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.1.2 RAPID components
Continued

4.1.3 Code examples

Create protected box
To prevent the robot TCP from moving into stationary equipment, set up a stationary
world zone around the equipment.
The routine my_power_on should then be connected to the event POWER ON.
For information on how to do this, read about defining event routines in Operating
manual - OmniCore.

xx0300000178

VAR wzstationary obstacle;

PROC my_power_on()

VAR shapedata volume;

CONST pos p1 := [200, 100, 100];

CONST pos p2 := [600, 400, 400];

!Define a box between the corners p1 and p2

WZBoxDef \Inside, volume, p1, p2;

!Define and enable supervision of the box

WZLimSup \Stat, obstacle, volume;

ENDPROC

Signal when robot is in position
When two robots share a work area it is important to know when a robot is out of
the way, letting the other robot move freely.
This example defines a home position where the robot is in a safe position and
sets an output signal when the robot is in its home position. The robot is standing
on a travel track, handled as external axis 1. No other external axes are active.

Continues on next page
Application manual - Controller software OmniCore 223
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.1.3 Code examples

The shadowed area in the illustration shows the world zone.

xx0300000206

VAR wztemporary home;

PROC zone_output()

VAR shapedata joint_space;

!Define the home position

CONST jointtarget home_pos := [[0, -20, 0, 0, 0, 0], [0, 9E9,
9E9, 9E9, 9E9, 9E9]];

!Define accepted deviation from the home position

CONST jointtarget delta_pos := [[2, 2, 2, 2, 2, 2], [10, 9E9,
9E9, 9E9, 9E9, 9E9]];

!Define the shape of the world zone

WZHomeJointDef \Inside, joint_space, home_pos, delta_pos;

!Define the world zone, setting the

!signal do_home to 1 when in zone

WZDOSet \Temp, home \Inside, joint_space, do_home, 1;

ENDPROC

224 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.1.3 Code examples
Continued

4.2 Collision Detection [3107-1]

4.2.1 Overview

Purpose
Collision Detection is a software option that reduces collision impact forces on the
robot. This helps protecting the robot and external equipment from severe damage.

WARNING

Collision Detection cannot protect equipment from damage at a full speed
collision.

Description
The software option Collision Detection identifies a collision by high sensitivity,
model based supervision of the robot. Depending on what forces you deliberately
apply on the robot, the sensitivity can be tuned as well as turned on and off.
Because the forces on the robot can vary during program execution, the sensitivity
can be set on-line in the program code.
Collision detection is more sensitive than the ordinary supervision and has extra
features. When a collision is detected, the robot will immediately stop and relieve
the residual forces by moving in reversed direction a short distance along its path.
After a collision error message has been acknowledged, the movement can continue
without having to press Motors on on the controller.

What is included
The RobotWare option Collision Detection gives you access to:

• system parameters for defining if Collision Detection should be active and
how sensitive it should be (without the option you can only turn detection on
and off for Auto mode)

• instruction for on-line changes of the sensitivity:MotionSup

Basic approach
Collision Detection is by default always active when the robot is moving. In many
cases this means that you can use Collision Detection without having to take any
active measures.
If necessary, you can turn Collision Detection on and off or change its sensitivity
in two ways:

• temporary changes can be made on-line with the RAPID instruction
MotionSup

• permanent changes are made through the system parameters.

Continues on next page
Application manual - Controller software OmniCore 225
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.1 Overview

Collision detection for YuMi robots
As default YuMi will have collision detection active at stand still. It also has another
stop ramp compared to other robots to be able to release clamping forces.

Note

If the tool data is wrong, false collisions might be triggered and the robot arm
might drop a short distance during the stop ramp.

226 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.1 Overview
Continued

4.2.2 Limitations

Load definition
In order to detect collisions properly, the payload of the robot must be correctly
defined.

Tip

Use Load Identification to define the payload. For more information, seeOperating
manual - OmniCore.

Robot axes only
Collision Detection is only available for the robot axes. It is not available for track
motions, orbit stations, or any other external axes.

Independent joint
The collision detection is deactivated when at least one axis is run in independent
joint mode. This is also the case even when it is an external axis that is run as an
independent joint.

Soft servo
The collision detection may trigger without a collision when the robot is used in
soft servo mode. Therefore, it is recommended to turn the collision detection off
when the robot is in soft servo mode.

No change until the robot moves
If the RAPID instruction MotionSup is used to turn off the collision detection, this
will only take effect once the robot starts to move. As a result, the digital output
MotSupOn may temporarily have an unexpected value at program start before the
robot starts to move.

Reversed movement distance
The distance the robot is reversed after a collision is proportional to the speed of
the motion before the collision. If repeated low speed collisions occur, the robot
may not be reversed sufficiently to relieve the stress of the collision. As a result,
it may not be possible to jog the robot without the supervision triggering. In this
case, turn Collision Detection off temporarily and jog the robot away from the
obstacle.

Delay before reversed movement
In the event of a stiff collision during program execution, it may take a few seconds
before the robot starts the reversed movement.

Robot on track motion
If the robot is mounted on a track motion the collision detection should be
deactivated when the track motion is moving. If it is not deactivated, the collision
detection may trigger when the track moves, even if there is no collision.

Application manual - Controller software OmniCore 227
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.2 Limitations

4.2.3 What happens at a collision

Overview
When the collision detection is triggered, the robot will stop as quickly as possible.
Then it will move in the reverse direction to remove residual forces. The program
execution will stop with an error message. The robot remains in the state motors
on so that program execution can be resumed after the collision error message
has been acknowledged.
A typical collision is illustrated below.

Collision illustration

xx0300000361

Robot behavior after a collision
This list shows the order of events after a collision. For an illustration of the
sequence, see the diagram below.

then ...When ...

the motor torques are reversed and the mechanical brakes
applied in order to stop the robot

the collision is detected

the robot moves in reversed direction a short distance along
the path in order to remove any residual forces which may
be present if a collision or jam occurred

the robot has stopped

the robot stops again and remains in the motors on statethe residual forces are re-
moved

Continues on next page
228 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.3 What happens at a collision

Speed and torque diagram

en0300000360

Application manual - Controller software OmniCore 229
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.3 What happens at a collision

Continued

4.2.4 Additional information

Motion error handling
For more information regarding error handling for a collision, see Technical
reference manual - RAPID kernel.

230 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.4 Additional information

4.2.5 Configuration and programming facilities

4.2.5.1 System parameters

About system parameters
Most of the system parameters for Collision Detection do not require a restart to
take effect.
For more information about the parameters, see Technical reference
manual - System parameters.

Motion Supervision
These parameters belong to the type Motion Supervision in the topic Motion.

DescriptionParameter

Turn the collision detection On or Off for program execution.Path Collision Detection
Path Collision Detection is by default set to On.

Turn the collision detection On or Off for jogging.Jog Collision Detection
Jog Collision Detection is by default set to On.

Modifies the Collision Detection supervision level for program
execution by the specified percentage value. A large percent-
age value makes the function less sensitive.

Path Collision Detection
Level

Path Collision Detection Level is by default set to 100%.

Modifies the Collision Detection supervision level for jogging
by the specified percentage value. A large percentage value
makes the function less sensitive.

Jog Collision Detection Level

Jog Collision Detection Level is by default set to 100%.

Defines how much the robot moves in reversed direction on
the path after a collision, specified in seconds. If the robot
moved fast before the collision it will move away a larger
distance than if the speed was slow.

Collision Detection Memory

Collision Detection Memory is by default set to 75 ms.

Turns the supervision for the loose arm detection on or off
for IRB 340 and IRB 360. A loose arm will stop the robot and
cause an error message.

Manipulator Supervision

Manipulator Supervision is by default set to On.

Modifies the supervision level for the loose arm detection for
the manipulators IRB 340 and IRB 360. A large value makes
the function less sensitive.

Manipulator Supervision
Level

Manipulator Supervision Level is by default value set to 100%.

Motion Planner
These parameters belong to the type Motion Planner in the topic Motion.

DescriptionParameter

Set the maximum level to which the total collision detection
tune level can be changed. It is by default set to 300%.

Motion Supervision Max
Level

Continues on next page
Application manual - Controller software OmniCore 231
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.5.1 System parameters

Motion System
This parameter belongs to the type Motion System in the topic Motion.

DescriptionParameter

This parameter is only valid for systems using the MultiMove
option. If this parameter is set to TRUE, detected collisions will
be handled independently in RAPID tasks that are executed
independently.

Ind collision stop without
brake

A restart is required for this parameter to take effect.

General RAPID
These parameters belong to the type General RAPID in the topic Controller.

DescriptionParameter

Enables RAPID error handling for collision. Collision Error
Handler is default set to Off.

Collision Error Handler

For more information regarding error handling for a collision,
see Technical reference manual - RAPID kernel

232 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.5.1 System parameters
Continued

4.2.5.2 RAPID components

Instructions
This is a brief description of the instructions in Collision Detection. For more
information, see respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

MotionSup is used to:
• activate or deactivate Collision Detection. This can only be done

if the parameter Path Collision Detection is set to On.
• modify the supervision level with a specified percentage value

(1-300%). A large percentage value makes the function less
sensitive.

MotionSup

Application manual - Controller software OmniCore 233
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.5.2 RAPID components

4.2.5.3 Signals

Digital outputs
This is a brief description of the digital outputs in Collision Detection. For more
information, see respective digital output in Technical reference manual - System
parameters.

DescriptionDigital output

MotSupOn is high when Collision Detection is active and low when it
is not active.

MotSupOn

Note that a change in the state takes effect when a motion starts. Thus,
if Collision Detection is active and the robot is moving, MotSupOn is
high. If the robot is stopped and Collision Detection is turned off, Mot-
SupOn is still high. When the robot starts to move,MotSupOn switches
to low.
Before the first Motors On order after a restart of the robot controller,
MotSupOnwill reflect the value of the corresponding system parameter
Path Collision Detection:

• If Path Collision Detection is set to On, MotSupOn will be high.
• If Path Collision Detection is set to Off, MotSupOn will be low.

MotSupTrigg goes high when the collision detection triggers. It stays
high until the error code is acknowledged from the FlexPendant.

MotSupTrigg

234 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.5.3 Signals

4.2.6 How to use Collision Detection

4.2.6.1 Set up system parameters

Activate supervision
To be able to use Collision Detection during program execution, the parameter
Path Collision Detection must be set to On.
To be able to use Collision Detection during jogging, the parameter Jog Collision
Detection must be set to On.

Define supervision levels
Set the parameter Path Collision Detection Level to the percentage value you want
as default during program execution.
Set the parameter Jog Collision Detection Level to the percentage value you want
as default during jogging.

Application manual - Controller software OmniCore 235
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.6.1 Set up system parameters

4.2.6.2 Adjust supervision from FlexPendant

Speed adjusted supervision level
Collision Detection uses a variable supervision level. At low speeds it is more
sensitive than at high speeds. For this reason, no tuning of the function should be
required by the user during normal operating conditions. However, it is possible
to turn the function on and off and to tune the supervision levels.
Separate tuning parameters are available for jogging and program execution. These
parameters are described in System parameters on page 231.

Set jog supervision on FlexPendant
On the FlexPendant, select Control from the QuickSet window and then tap Jog.
On the Jog Settings, tap Jog Supervision.
Supervision can be turned on or off and the sensitivity can be adjusted for both
programmed paths and jogging. The sensitivity level is set in percentage. A large
value makes the function less sensitive.
If the motion supervision for jogging is turned off in the dialog box and a program
is executed, Collision Detection can still be active during execution of the program.

Note

The supervision settings correspond to system parameters of the type Motion
Supervision. These can be set using the supervision settings on the FlexPendant,
as described above. They can also be changed using RobotStudio or FlexPendant
configuration editor or Quickset Mechanical unit menu.

236 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.6.2 Adjust supervision from FlexPendant

4.2.6.3 Adjust supervision from RAPID program

Default values
If Collision Detection is activated with the system parameters, it is by default active
during program execution with the tune value 100%. These values are set
automatically:

• when using the restart mode Reset system.
• when a new program is loaded.
• when starting program execution from the beginning.

Note

If tune values are set in the system parameters and in the RAPID instruction,
both values are taken into consideration.
Example: If the tune value in the system parameters is set to 150% and the tune
value is set to 200% in the RAPID instruction the resulting tune level will be 300%.

Temporarily deactivate supervision
If external forces will affect the robot during a part of the program execution,
temporarily deactivate the supervision with the following instruction:

MotionSup \Off;

Reactivate supervision
If the supervision has been temporarily deactivated, it can be activated with the
following instruction:

MotionSup \On;

Note

If the supervision is deactivated with the system parameters, it cannot be activated
with RAPID instructions.

Tuning
The supervision level can be tuned during program execution with the instruction
MotionSup. The tune values are set in percent of the basic tuning where 100%
corresponds to the basic values. A higher percentage gives a less sensitive system.
This is an example of an instruction that increase the supervision level to 200%:

MotionSup \On \TuneValue:=200;

Application manual - Controller software OmniCore 237
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.6.3 Adjust supervision from RAPID program

4.2.6.4 How to avoid false triggering

About false triggering
Because the supervision is designed to be very sensitive, it may trigger if the load
data is incorrect or if there are large process forces acting on the robot.

Actions to take

then ...If ...

use Load Identification to define it. For more information, see
Operating manual - OmniCore.

the payload is incorrectly
defined

increase supervision levelthe payload has large mass
or inertia

manually define the arm load or increase supervision levelthe arm load (cables or simil-
ar) cause trigger

increase the supervision level for jogging and program exe-
cution in steps of 30 percent until you no longer receive the
error code.

the application involves
many external process
forces

use the instruction MotionSup to raise the supervision level
or turn the function off temporarily.

the external process forces
are only temporary

turn off Collision Detection.everything else fails

238 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.2.6.4 How to avoid false triggering

4.3 Collision Avoidance [3150-1]

Introduction
The functionCollision Avoidance monitors a detailed geometric model of the robot.
By defining additional geometrical models of bodies in the robot workarea, the
controller will warn about a predicted collision and stops the robot if two bodies
come too close to each other. The system parameter Coll-Pred Safety Distance
determines at what distance the two objects are considered to be in collision.
The functionCollision Avoidance is useful for example when setting up and testing
programs, or for programs where positions are not static but created from sensors,
such as cameras (non-deterministic programs). By using trigger-signals (see Trigger
signals on page 240), Collision Avoidance can be used for implementing safe
workspace sharing between multiple robots.
Besides the robot itself the function will monitor up 10 objects that is created via
the configurator in RobotStudio. Typical objects to be monitored are tool mounted
on the robot flange, additional equipment mounted on the robot arm (typically axis
3) or static volume around the robot.
The geometric models are set up in RobotStudio.
The functionality is activated by the system inputCollision Avoidance. A high signal
will activate the functionality and a low signal will deactivate the functionality. The
functionality is by default active if no signal has been assigned to the system input
Collision Avoidance.
Collision Avoidance is active both during jogging and when running programs.
Also, the RAPID function IsCollFree provides a way to check possible collisions
before moving to a position.

CAUTION

Always be careful to avoid collisions with external equipment, since a collision
could damage the mechanical structure of the arm.
Collision Avoidance is no guarantee for avoiding collisions.

Tip

How to configure Collision Avoidance is described in Operating
manual - RobotStudio.

False collision warning
There are different ways to lower the sensitivity of the function Collision Avoidance
to avoid false warnings.

• Temporarily disable Collision Avoidance, see Disabling Collision Avoidance
on page 241.

• Decrease the general safety distance with the system parameter Coll-Pred
Safety Distance.

Continues on next page
Application manual - Controller software OmniCore 239
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.3 Collision Avoidance [3150-1]

Activation/deactivation of objects
By default, a defined collision object is active all the time. However, it is possible
to configure a collision object with an activation signal, which basically connects
it to a digital input that determines whether the object is active or not. This is useful,
for example, for modelling multiple tools, where only one tool at a time is active.
Another use case is modelling of objects that can be present or absent in the robot
cell, for example a pallet.
Note that changing the state of an activation signal will immediately change the
activation state of the connected collision object, and no synchronization to the
robot path planning is made. Activating a collision object while the robot is moving
towards the object can thus lead to a collision because the planned path may
already have passed by the collision object while it was inactive. If synchronization
is important, then activation signals should either be changed in finepoints when
the robot is standing still or using trigg instructions like TriggL or TriggJ.

Trigger signals
A non-moving collision object can be configured with a trigger signal. The value
of the trigger signal reflects which robots are in contact with the collision object.
More specifically, the value of a trigger signal should be interpreted as a bit pattern,
where bit k is high if robot k is in contact with the collision object. For example, if
the trigger signal has the value 6, which is 110 in binary, it means that ROB_2 and
ROB_3 are in contact with the collision object. Trigger signals can be used to
implement safe workspace sharing between multiple robots.
A trigger signal can be configured with two timing behaviors: immediate or
on-arrival. If configured with immediate behavior, then the trigger signal is changed
as quickly as possible, well before the robot has physically reached the position
where it comes into contact with the collision object. If configured with on-arrival
behavior, then the trigger signal changes state when the robot physically reaches
the position where it comes in contact with the zone.

Limitations

CAUTION

Collision Avoidance shall not be used for safety of personnel.

• Paint robots are not supported.
• Collision Avoidance cannot be used in manual mode together with responsive

jogging. The system parameter Jog Mode must be changed to Standard.
• Only stationary/non-moving objects can be configured with a trigger signal.

A trigger signal must correspond to a group signal. Furthermore, each
collision object must have its own trigger signal.

• There is no support for applications that do corrections to the path, such as
conveyor tracking, WeldGuide, Force Control, SoftMove, SoftAct etc.

Continues on next page
240 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.3 Collision Avoidance [3150-1]
Continued

Disabling Collision Avoidance
It is possible to temporarily disable the function Collision Avoidance if the robot
has already collided or is within the default safety distance, or when the robot arms
need to be very close and the risk of collision is acceptable.
Set the system input signal Collision Avoidance to 0 to disable Collision
Avoidance. It is recommended to enable it (set Collision Avoidance to 1) as
soon as the work is done that required Collision Avoidance to be disabled.

Application manual - Controller software OmniCore 241
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.3 Collision Avoidance [3150-1]

Continued

4.4 SafeMove Assistant

Purpose
SafeMove Assistant is a functionality in RobotWare that helps users to program
their application when there is an active SafeMove configuration. The assistant
will read the active configuration and plan the trajectories according to the limits
and settings in that configuration. It will set the speed so that SafeMove will not
trigger violations etc. It will also stop with error message in case the robot is
programmed to enter a forbidden zone etc.
SafeMove Assistant will automatically adjust robot behavior to adopt to the active
SafeMove configuration, the robot will adopt to speed limited zones and stop before
entering forbidden zones.

CAUTION

SafeMove Assistant is not a safety function.

Note

In case of SafeMove Assistant fails, the SafeMove supervision will trigger an
emergency stop.

Description
SafeMove Assistant will check if any SafeMove speed limit is active for any
Cartesian speed checkpoint (TCP, tool points, and elbow). If this is the case, a
corresponding speed limit is applied in the path planner. For technical reasons,
only the speed of the TCP, the wrist center point (WCP), and the elbow are limited
by the path planner. Therefore, in cases where other tool points move faster than
the TCP, SafeMove may trigger a Tool Speed violation. To avoid this, change the
program or decrease the value of the parameter SafeMove assistance speed factor
(see below).
SafeMove Assistant is not active in manual mode.
SafeMove Assistant does not take path corrections generated at lower level into
account. It is therefore an increased risk of SafeMove violations when running
applications like Externally Guided Motion or conveyor tracking.

System parameters
SafeMove Assistant can be disabled for the SafeMove validation etc. This is done
with the parameter Disable SafeMove Assistance, in the type in Motion System.
There are some parameters that can be changed in case robot system has minor
overshoot or in any other way triggers SafeMove violations.

DescriptionParameter

That has a default setting of 0.96 which corresponds to 96% of speed
supervision will be the speed that path planner will use. This parameter
can be decreased to reduce that risk but can in most cases be left at
default value.

SafeMoveAssist-
ance Speed
Factor

Continues on next page
242 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.4 SafeMove Assistant

DescriptionParameter

When robot is running on a zone border there is a small risk that Safe-
Move can trigger violations when going in and out of the zone. This
parameter can be increased to reduce that risk but can in most cases
be left at default value.

SafeMove assist-
ance zone mar-
gin

For more information, see the parameters in the type Motion System described in
Technical reference manual - System parameters.

Application manual - Controller software OmniCore 243
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

4 Motion Supervision
4.4 SafeMove Assistant

Continued

This page is intentionally left blank

5 Motor Control
5.1 Independent Axis [3111-1]

5.1.1 Overview

Purpose
The purpose of Independent Axis is to move an axis independently of other axes
in the robot system. Some examples of applications are:

• Move an external axis holding an object (for example rotating an object while
the robot is spray painting it).

• Save cycle time by performing a robot task at the same time as an external
axis performs another.

• Continuously rotate robot axis 6 (for polishing or similar tasks).
• Reset the measurement system after an axis has rotated multiple revolutions

in the same direction. Saves cycle time compared to physically winding back.
An axis can move independently if it is set to independent mode. An axis can be
changed to independent mode and later back to normal mode again.

What is included
The RobotWare option Independent Axis gives you access to:

• instructions used to set independent mode and specify the movement for an
axis

• an instruction for changing back to normal mode and/or reset the
measurement system

• functions used to verify the status of an independent axis
• system parameters for configuration.

Basic approach
This is the general approach for moving an axis independently. For detailed
examples of how this is done, see Code examples on page 249.

1 Call an independent move instruction to set the axis to independent mode
and move it.

2 Let the robot execute another instruction at the same time as the independent
axis moves.

3 When both robot and independent axis has stopped, reset the independent
axis to normal mode.

Reset axis
Even without being in independent mode, an axis might rotate only in one direction
and eventually loose precision. The measurement system can then be reset with
the instruction IndReset.
The recommendation is to reset the measurement system for an axis before its
motor has rotated 10000 revolutions in the same direction.

Continues on next page
Application manual - Controller software OmniCore 245
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

5 Motor Control
5.1.1 Overview

Limitations
A mechanical unit may not be deactivated when one of its axes is in independent
mode.
Axes in independent mode cannot be jogged.
The only robot axis that can be used as an independent axis is axis number 6. On
IRB 1600, 2600 and 4600 models (except ID version), the instruction IndReset

can also be used for axis 4.
Internal and customer cabling and equipment may limit the ability to use
independent axis functionality on axis 4 and 6.
The option is not possible to use in combination with:

• SafeMove I

• Track Motion (IRBT)
• Positioners (IRBP) on Interchange axes

I Independent Axis can in some cases be combined with SafeMove2 if the additional axis does not
move the robot, and the additional axis is not monitored by SafeMove. Contact your local ABB
sales office team for additional information.

The following is deactivated when option Independent Axes is used:
• Collision detection

Note

The collision detection is deactivated on all axes in a motion planner if one
of them is run in independent mode.

246 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

5 Motor Control
5.1.1 Overview
Continued

5.1.2 System parameters

About the system parameters
This is a brief description of each parameter in the option Independent Axis. For
more information, see the respective parameter in Technical reference
manual - System parameters.

Arm
These parameters belongs to the type Arm in the topic Motion.

DescriptionParameter

Flag that determines if independent mode is allowed for the axis.Independent Joint

Defines the upper limit of the working area for the joint when operating
in independent mode.

Independent Upper
Joint Bound

Defines the lower limit of the working area for the joint when operating
in independent mode.

Independent Lower
Joint Bound

Transmission
These parameters belong to the type Transmission in the topic Motion.

DescriptionParameter

Independent Axes requires high resolution in transmission gear ratio,
which is therefore defined as Transmission Gear High divided by
Transmission Gear Low. If no smaller number can be used, the
transmission gear ratio will be correct if Transmission Gear High is
set to the number of cogs on the robot axis side, and Transmission
Gear Low is set to the number of cogs on the motor side.

Transmission Gear
High

See Transmission Gear High.Transmission Gear
Low

Application manual - Controller software OmniCore 247
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

5 Motor Control
5.1.2 System parameters

5.1.3 RAPID components

Data types
There are no data types for Independent Axis.

Instructions
This is a brief description of each instruction in Independent Axis. For more
information, see respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.
An independent move instruction is executed immediately, even if the axis is being
moved at the time. If a new independent move instruction is executed before the
last one is finished, the new instruction immediately overrides the old one.

DescriptionInstruction

IndAMove (Independent Absolute position Movement) change an
axis to independent mode and move the axis to a specified position.

IndAMove

IndCMove (Independent Continuous Movement) change an axis to
independent mode and start moving the axis continuously at a spe-
cified speed.

IndCMove

IndDMove (Independent Delta position Movement) change an axis to
independent mode and move the axis a specified distance.

IndDMove

IndRMove (Independent Relative position Movement) change a rota-
tional axis to independent mode and move the axis to a specific pos-
ition within one revolution.

IndRMove

Because the revolution information in the position is omitted,
IndRMove never rotates more than one axis revolution.

IndReset is used to change an independent axis back to normal
mode.

IndReset

IndReset can move the measurement system for a rotational axis a
number of axis revolutions. The resolution of positions is decreased
when moving away from logical position 0, and winding the axis back
would take time. By moving the measurement system the resolution
is maintained without physically winding the axis back.
Both the independent axis and the robot must stand still when calling
IndReset.

Functions
This is a brief description of each function in Independent Axis. For more
information, see respective function in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

IndInposindicates whether an axis has reached the selected position.IndInpos

IndSpeed indicates whether an axis has reached the selected speed.IndSpeed

248 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

5 Motor Control
5.1.3 RAPID components

5.1.4 Code examples

Save cycle time
An object in station A needs welding in two places. The external axis for station A
can turn the object in position for the second welding while the robot is welding
on another object. This saves cycle time compared to letting the robot wait while
the external axis moves.

!Perform first welding in station A

!Call subroutine for welding

weld_stationA_1;

!Move the object in station A, axis 1, with

!independent movement to position 90 degrees

!at the speed 20 degrees/second

IndAMove Station_A,1\ToAbsNum:=90,20;

!Let the robot perform another task while waiting

!Call subroutine for welding

weld_stationB_1;

!Wait until the independent axis is in position

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

!Perform second welding in station A

!Call subroutine for welding

weld_stationA_2;

Polish by rotating axis 6
To polish an object the robot axis 6 can be set to continuously rotate.
Set robot axis 6 to independent mode and continuously rotate it. Move the robot
over the area you want to polish. Stop movement for both robot and independent
axis before changing back to normal mode. After rotating the axis many revolutions,
reset the measurement system to maintain the resolution.
Note that, for this example to work, the parameter Independent Joint for rob1_6
must be set to Yes.

PROC Polish()

!Change axis 6 of ROB_1 to independent mode and

!rotate it with 180 degrees/second

IndCMove ROB_1, 6, 180;

!Wait until axis 6 is up to speed

WaitUntil IndSpeed(ROB_1,6\InSpeed);

WaitTime 0.2;

!Move robot where you want to polish

MoveL p1,v10, z50, tool1;

MoveL p2,v10, fine, tool1;

Continues on next page
Application manual - Controller software OmniCore 249
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

5 Motor Control
5.1.4 Code examples

!Stop axis 6 and wait until it's still

IndCMove ROB_1, 6, 0;

WaitUntil IndSpeed(ROB_1,6\ZeroSpeed);

WaitTime 0.2;

!Change axis 6 back to normal mode and

!reset measurement system (close to 0)

IndReset ROB_1, 6 \RefNum:=0 \Short;

ENDPROC

Reset an axis
This is an example of how to reset the measurement system for axis 1 in station
A. The measurement system will change a whole number of revolutions, so it is
close to zero (±180°).

IndReset Station_A, 1 \RefNum:=0 \Short;

250 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

5 Motor Control
5.1.4 Code examples
Continued

6 RAPID Program Features
6.1 Path Recovery [3113-1]

6.1.1 Overview

Purpose
Path Recovery is used to store the current movement path, perform some robot
movements and then restore the interrupted path. This is useful when an error or
interrupt occurs during the path movement. An error handler or interrupt routine
can perform a task and then recreate the path.
For applications like arc welding and gluing, it is important to continue the work
from the point where the robot left off. If the robot started over from the beginning,
then the work piece would have to be scrapped.
If a process error occurs when the robot is inside a work piece, moving the robot
straight out might cause a collision. By using the path recorder, the robot can
instead move out along the same path it came in.

What is included
The RobotWare option Path Recovery gives you access to:

• instructions to suspend and resume the coordinated synchronized movement
mode on the error or interrupt level.

• a path recorder, with the ability to move the TCP out from a position along
the same path it came.

Limitations
The instructions StorePath and RestoPath only handles movement path data.
The stop position must also be stored.
Movements using the path recorder has to be performed on trap-level, i.e.
StorePath has to be executed prior to PathRecMoveBwd.

Application manual - Controller software OmniCore 251
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.1 Overview

6.1.2 RAPID components

Data types
This is a brief description of each data type in Path Recovery. For more information,
see the respective data type in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionData type

pathrecid is used to identify a breakpoint for the path recorder.pathrecid

Instructions
This is a brief description of each instruction in Path Recovery. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

StorePath is used to store the movement path being executed when
an error or interrupt occurs.

StorePath

RestoPath is used to restore the path that was stored by StorePath.RestoPath

PathRecStart is used to start recording the robot’s path. The path
recorder will store path information during execution of the robot
program.

PathRecStart

PathRecStop is used to stop recording the robot's path.PathRecStop

PathRecMoveBwd is used to move the robot backwards along a recor-
ded path.

PathRecMoveBwd

PathRecMoveFwd is used to move the robot back to the position
where PathRecMoveBwd was executed.

PathRecMoveFwd

It is also possible to move the robot partly forward by supplying an
identifier that has been passed during the backward movement.

SyncMoveSuspend is used to suspend synchronized movements
mode and set the system to independent movement mode.

SyncMoveSuspend

SyncmoveResume is used to go back to synchronized movements
from independent movement mode.

SyncMoveResume

Functions
This is a brief description of each function in Path Recovery. For more information,
see the respective function in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionFunction

PathRecValidBwd is used to check if the path recorder is active and
if a recorded backward path is available.

PathRecValidBwd

PathRecValidFwd is used to check if the path recorder can be used
to move forward. The ability to move forward with the path recorder
implies that the path recorder must have been ordered to move
backwards earlier.

PathRecValidFwd

252 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.2 RAPID components

6.1.3 Store current path

Why store the path?
The simplest way to use Path Recovery is to only store the current path to be able
to restore it after resolving an error or similar action.
Let's say that an error occur during arc welding. To resolve the error the robot
might have to be moved away from the part. When the error is resolved, the welding
should be continued from the point it left off. This is solved by storing the path
information and the position of the robot before moving away from the path. The
path can then be restored and the welding resumed after the error has been
handled.

Basic approach
This is the general approach for storing the current path:

1 At the start of an error handler or interrupt routine:
stop the movement
store the movement path
store the stop position

2 At the end of the error handler or interrupt routine:
move to the stored stop position
restore the movement path
start the movement

Example
This is an example of how to use Path Recovery in error handling. First the path
and position is stored, the error is corrected and then the robot is moved back in
position and the path is restored.

MoveL p100, v100, z10, gun1;

...

ERROR

IF ERRNO=MY_GUN_ERR THEN

gun_cleaning();

ENDIF

...

PROC gun_cleaning()

VAR robtarget p1;

!Stop the robot movement, if not already stopped.

StopMove;

!Store the movement path and current position

StorePath;

p1 := CRobT(\Tool:=gun1\WObj:=wobj0);

!Correct the error

MoveL pclean, v100, fine, gun1;

Continues on next page
Application manual - Controller software OmniCore 253
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.3 Store current path

...

!Move the robot back to the stored position

MoveL p1, v100, fine, gun1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

254 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.3 Store current path
Continued

6.1.4 Path recorder

What is the path recorder
The path recorder can memorize a number of move instructions. This memory can
then be used to move the robot backwards along that same path.

How to use the path recorder
This is the general approach for using the path recorder:

1 Start the path recorder
2 Move the robot with regular move, or process, instructions
3 Store the current path
4 Move backwards along the recorded path
5 Resolve the error
6 Move forward along the recorded path
7 Restore the interrupted path

Lift the tool
When the robot moves backward in its own track, you may want to avoid scraping
the tool against the work piece. For a process like arc welding, you want to stay
clear of the welding seam.
By using the argument ToolOffs in the instructions PathRecMoveBwd and
PathRecMoveFwd, you can set an offset for the TCP. This offset is set in tool
coordinates, which means that if it is set to [0,0,10] the tool will be 10mm from the
work object when it moves back along the recorded path.

xx0400000828

Note

When a MultiMove system is in synchronized mode all tasks must use ToolOffs
if a tool is going to be lifted.
However if you only want to lift one tool, set ToolOffs=[0,0,0] in the other
tasks.

Simple example
If an error occurs between p1 and p4, the robot will return to p1 where the error
can be resolved. When the error has been resolved, the robot continues from where
the error occurred.

Continues on next page
Application manual - Controller software OmniCore 255
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.4 Path recorder

When p4 is reached without any error, the path recorder is switched off. The robot
then moves from p4 to p5 without the path recorder.

...

VAR pathrecid start_id;

...

MoveL p1, vmax, fine, tool1;

PathRecStart start_id;

MoveL p2, vmax, z50, tool1;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, fine, tool1;

PathRecStop \Clear;

MoveL p5, vmax, fine, tool1;

ERROR

StorePath;

PathRecMoveBwd;

! Fix the problem

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

ENDIF

...

Complex example
In this example, the path recorder is used for two purposes:

• If an error occurs, the operator can choose to back up to p1 or to p2. When
the error has been resolved, the interrupted movement is resumed.

• Even if no error occurs, the path recorder is used to move the robot from p4
to p1. This technique is useful when the robot is in a narrow position that is
difficult to move out of.

Note that if an error occurs during the first move instruction, between p1 and p2,
it is not possible to go backwards to p2. If the operator choose to go back to p2,
PathRecValidBwd is used to see if it is possible. Before the robot is moved forward
to the position where it was interrupted, PathRecValidFwd is used to see if it is
possible (if the robot never backed up it is already in position).

...

VAR pathrecid origin_id;

VAR pathrecid corner_id;

VAR num choice;

...

MoveJ p1, vmax, z50, tool1;

PathRecStart origin_id;

MoveJ p2, vmax, z50, tool1;

PathRecStart corner_id;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, fine, tool1;

! Use path record to move safely to p1

Continues on next page
256 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.4 Path recorder
Continued

StorePath;

PathRecMoveBwd \ID:=origin_id

\ToolOffs:=[0,0,10];

RestoPath;

PathRecStop \Clear;

Clear Path;

Start Move;

ERROR

StorePath;

! Ask operator how far to back up

TPReadFK choice,"Extract to:", stEmpty, stEmpty,

stEmpty, "Origin", "Corner";

IF choice=4 THEN

! Back up to p1

PathRecMoveBwd \ID:=origin_id

\ToolOffs:=[0,0,10];

ELSEIF choice=5 THEN

! Verify that it is possible to back to p2,

IF PathRecValidBwd(\ID:=corner_id) THEN

! Back up to p2

PathRecMoveBwd \ID:=corner_id

\ToolOffs:=[0,0,10];

ENDIF

ENDIF

! Fix the problem

! Verify that there is a path record forward

IF PathRecValidFwd() THEN

! Return to where the path was interrupted

PathRecMoveFwd \ToolOffs:=[0,0,10];

ENDIF

! Restore the path and resume movement

RestoPath;

StartMove;

RETRY;

...

Resume path recorder
If the path recorder is stopped, it can be started again from the same position
without loosing its history.
In the example below, the PathRecMoveBwd instruction will back the robot to p1.
If the robot had been in any other position than p2 when the path recorder was
restarted, this would not have been possible.

Continues on next page
Application manual - Controller software OmniCore 257
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.4 Path recorder

Continued

For more information, see the section about PathRecStop in Technical reference
manual - RAPID Instructions, Functions and Data types.

...

MoveL p1, vmax, z50, tool1;

PathRecStart id1;

MoveL p2, vmax, z50, tool1;

PathRecStop;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStart id2;

MoveL p5, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=id1;

RestoPath;

...

258 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.1.4 Path recorder
Continued

6.2 Multitasking [3114-1]

6.2.1 Introduction to Multitasking

Purpose
The purpose of the option Multitasking is to be able to execute more than one
program at a time.
Examples of applications to run in parallel with the main program:

• Continuous supervision of signals, even if the main program has stopped.
This can in some cases take over the job of a PLC. However, the response
time will not match that of a PLC.

• Operator input from the FlexPendant while the robot is working.
• Control and activation/deactivation of external equipment.

Basic description
Up to 20 tasks can be run at the same time.
Each task consists of one program (with several program modules) and several
system modules. The modules are local in the respective task.

en0300000517

Variables and constants are local in the respective task, but persistents are not.
Every task has its own trap handling and event routines are triggered only on its
own task system states.

What is included
The RobotWare option Multitasking gives you access to:

• The possibility to run up to 20 programs in parallel (one per task).
• The system parameters: The type Task and all its parameters.
• The data types: taskid, syncident, and tasks.
• The instruction: WaitSyncTask.
• The functions: TestAndSet, TaskRunMec, and TaskRunRob.

Continues on next page
Application manual - Controller software OmniCore 259
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.1 Introduction to Multitasking

Note

TestAndSet, TaskRunMec, and TaskRunRob can be used without the option
Multitasking, but they are much more useful together with Multitasking.

Basic approach
This is the basic approach for setting up Multitasking. For more information,
seeRAPID components on page 263.

1 Define the tasks you need.
2 Write RAPID code for each task.
3 Specify which modules to load in each task.

260 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.1 Introduction to Multitasking
Continued

6.2.2 System parameters

About the system parameters
This is a brief description of each parameter in the option Multitasking. For more
information, see the respective parameter in Technical reference manual - System
parameters.

Task
These parameters belongs to the type Task in the topic Controller.

DescriptionParameter

The name of the task.Task
Note that the name of the task must be unique. This means that it cannot
have the same name as the mechanical unit, and no variable in the
RAPID program can have the same name.
Note that editing the task entry in the configuration editor and changing
the task name will remove the old task and add a new one. This means
that any program or module in the task will disappear after a restart with
these kind of changes.

Used to set priorities between tasks.Task in fore-
ground Task in foreground contains the name of the task that should run in the

foreground of this task. This means that the program of the task, for which
the parameter is set, will only execute if the foreground task program is
idle.
If Task in foreground is set to empty string for a task, it runs at the highest
level.

Controls the start/stop and system restart behavior:
• Normal (NORMAL) - The task program is manually started and

stopped (e.g. from the FlexPendant). The task stops at emergency
stop.

• Static (STATIC) - At a restart the task program continues from
where the it was. The task program is normally not stopped by the
FlexPendant or by emergency stop.

• Semistatic (SEMISTATIC) - The task program restarts from the
beginning at restart. The task program is normally not stopped by
the FlexPendant or by emergency stop.

A task that controls a mechanical unit must be of the type normal.

Type

The name of the start routine for the task program.Main entry

This parameter should be set to NO if the system is to accept unsolved
references in the program while linking a module, otherwise set to YES.

Check unre-
solved refer-
ences

TrustLevel defines the system behavior when a static or semistatic task
program is stopped (e.g. due to error):

• SysFail - If the program of this task stops, the system will be set
to SYS_FAIL. This will cause the programs of all NORMAL tasks
to stop (static and semistatic tasks will continue execution if pos-
sible). No jogging or program start can be made. A restart is re-
quired.

• SysHalt -If the program of this task stops, the programs of all
normal tasks will be stopped. If "motors on" is set, jogging is
possible, but not program start. A restart is required.

• SysStop - If the program of this task stops, the programs of all
normal tasks will be stopped but are restartable. Jogging is also
possible.

• NoSafety - Only the program of this task will stop.

TrustLevel

Continues on next page
Application manual - Controller software OmniCore 261
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.2 System parameters

DescriptionParameter

Indicates whether the task program can control robot movement with
RAPID move instructions.

MotionTask

Only one task can have MotionTask set to YES unless the option Mul-
tiMove is used.

262 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.2 System parameters
Continued

6.2.3 RAPID components

Data types
This is a brief description of each data type in Multitasking. For more information,
see the respective data type in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionData type

taskid identify available tasks in the system.taskid
This identity is defined by the system parameter Task, and cannot be
defined in the RAPID program. However, the data type taskid can be
used as a parameter when declaring a routine.
For code example, see taskid on page 274.

syncident is used to identify the waiting point in the program, when
using the instruction WaitSyncTask.

syncident

The name of the syncident variable must be the same in all task pro-
grams.
For code example, see WaitSyncTask example on page 268.

A variable of the data type tasks contains names of the tasks that will
be synchronized by the instruction WaitSyncTask.

tasks

For code example, see WaitSyncTask example on page 268.

Instructions
This is a brief description of each instruction in Multitasking. For more information,
see the respective instruction in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionInstruction

WaitSyncTask is used to synchronize several task programs at a special
point in the program.

WaitSyncTask

A WaitSyncTask instruction will delay program execution and wait for
the other task programs. When all task programs have reached the point,
the respective program will continue its execution.
For code example, seeWaitSyncTask example on page 268.

Functions
This is a brief description of each function in Multitasking. For more information,
see the respective function in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionFunction

TestAndSet is used, together with a boolean flag, to ensure that only one
task program at the time use a specific RAPID code area or system re-
source.

TestAndSet

For code example, seeExample with flag and TestAndSet on page 272.

Check if the task program controls any mechanical unit (robot or other
unit).

TaskRunMec

For code example, seeTest if task controls mechanical unit on page 273.

Check if the task program controls any robot with TCP.TaskRunRob
For code example, seeTest if task controls mechanical unit on page 273.

Application manual - Controller software OmniCore 263
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.3 RAPID components

6.2.4 Communication between tasks

6.2.4.1 Persistent variables

About persistent variables
To share data between tasks, use persistent variables.
A persistent variable is global in all tasks where it is declared. The persistent
variable must be declared as the same type and size (array dimension) in all tasks.
Otherwise a runtime error will occur.
It is sufficient to specify an initial value for the persistent variable in one task. If
initial values are specified in several tasks, only the initial value of the first module
to load will be used.

Tip

When a program is saved, the current value of a persistent variable will be used
as initial value in the future. If this is not desired, reset the persistent variable
directly after the communication.

Example with persistent variable
In this example the persistent variables startsync and stringtosend are
accessed by both tasks, and can therefore be used for communication between
the task programs.
Main task program:

MODULE module1

PERS bool startsync:=FALSE;

PERS string stringtosend:="";

PROC main()

stringtosend:="this is a test";

startsync:= TRUE

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS bool startsync;

PERS string stringtosend;

PROC main()

WaitUntil startsync;

IF stringtosend = "this is a test" THEN

...

ENDIF

!reset persistent variables

startsync:=FALSE;

stringtosend:="";

ENDPROC

ENDMODULE

Continues on next page
264 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.1 Persistent variables

Module for common data
When using persistent variables in several tasks, there should be declarations in
all the tasks. The best way to do this, to avoid type errors or forgetting a declaration
somewhere, is to declare all common variables in a system module. The system
module can then be loaded into all tasks that require the variables.

Application manual - Controller software OmniCore 265
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.1 Persistent variables

Continued

6.2.4.2 Waiting for other tasks

Two techniques
Some applications have task programs that execute independently of other tasks,
but often task programs need to know what other tasks are doing.
A task program can be made to wait for another task program. This is accomplished
either by setting a persistent variable that the other task program can poll, or by
setting a signal that the other task program can connect to an interrupt.

Polling
This is the easiest way to make a task program wait for another, but the performance
will be the slowest. Persistent variables are used together with the instructions
WaitUntil or WHILE.
If the instruction WaitUntil is used, it will poll internally every 100 ms.

CAUTION

Do not poll more frequently than every 100 ms. A loop that polls without a wait
instruction can cause overload, resulting in lost contact with the FlexPendant.

Polling example
Main task program:

MODULE module1

PERS bool startsync:=FALSE;

PROC main()

startsync:= TRUE;

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS bool startsync:=FALSE;

PROC main()

WaitUntil startsync;

! This is the point where the execution

! continues after startsync is set to TRUE

...

ENDPROC

ENDMODULE

Interrupt
By setting a signal in one task program and using an interrupt in another task
program, quick response is obtained without the work load caused by polling.
The drawback is that the code executed after the interrupt must be placed in a trap
routine.

Continues on next page
266 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.2 Waiting for other tasks

Interrupt example
Main task program:

MODULE module1

PROC main()

SetDO do1,1;

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

VAR intnum intno1;

PROC main()

CONNECT intno1 WITH wait_trap;

ISignalDO do1, 1, intno1;

WHILE TRUE DO

WaitTime 10;

ENDWHILE

ENDPROC

TRAP wait_trap

! This is the point where the execution

! continues after do1 is set in main task

...

IDelete intno1;

ENDTRAP

ENDMODULE

Application manual - Controller software OmniCore 267
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.2 Waiting for other tasks

Continued

6.2.4.3 Synchronizing between tasks

Synchronizing using WaitSyncTask
Synchronization is useful when task programs are depending on each other. No
task program will continue beyond a synchronization point in the program code
until all task programs have reached that point in the respective program code.
The instruction WaitSyncTask is used to synchronize task programs. No task
program will continue its execution until all task programs have reached the same
WaitSyncTask instruction.

WaitSyncTask example
In this example, the background task program calculates the next object's position
while the main task program handles the robots work with the current object.
The background task program may have to wait for operator input or I/O signals,
but the main task program will not continue with the next object until the new
position is calculated. Likewise, the background task program must not start the
next calculation until the main task program is done with one object and ready to
receive the new value.
Main task program:

MODULE module1

PERS pos object_position:=[0,0,0];

PERS tasks task_list{2} := [["MAIN"], ["BACK1"]];

VAR syncident sync1;

PROC main()

VAR pos position;

WHILE TRUE DO

!Wait for calculation of next object_position

WaitSyncTask sync1, task_list;

position:=object_position;

!Call routine to handle object

handle_object(position);

ENDWHILE

ENDPROC

PROC handle_object(pos position)

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS pos object_position:=[0,0,0];

PERS tasks task_list{2} := [["MAIN"], ["BACK1"]];

VAR syncident sync1;

Continues on next page
268 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.3 Synchronizing between tasks

PROC main()

WHILE TRUE DO

!Call routine to calculate object_position

calculate_position;

!Wait for handling of current object

WaitSyncTask sync1, task_list;

ENDWHILE

ENDPROC

PROC calculate_position()

...

object_position:= ...

ENDPROC

ENDMODULE

Application manual - Controller software OmniCore 269
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.3 Synchronizing between tasks

Continued

6.2.4.4 Using a dispatcher

What is a dispatcher?
A digital signal can be used to indicate when another task should do something.
However, it cannot contain information about what to do.
Instead of using one signal for each routine, a dispatcher can be used to determine
which routine to call. A dispatcher can be a persistent string variable containing
the name of the routine to execute in another task.

Dispatcher example
In this example, the main task program calls routines in the background task by
setting routine_string to the routine name and then setting do5 to 1. In this
way, the main task program initialize that the background task program should
execute the routine clean_gun first and then routine1.
Main task program:

MODULE module1

PERS string routine_string:="";

PROC main()

!Call clean_gun in background task

routine_string:="clean_gun";

SetDO do5,1;

WaitDO do5,0;

!Call routine1 in background task

routine_string:="routine1";

SetDO do5,1;

WaitDO do5,0;

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS string routine_string:="";

PROC main()

WaitDO do5,1;

%routine_string%;

SetDO do5,0;

ENDPROC

PROC clean_gun()

...

ENDPROC

PROC routine1()

...

Continues on next page
270 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.4 Using a dispatcher

ENDPROC

ENDMODULE

Application manual - Controller software OmniCore 271
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.4.4 Using a dispatcher

Continued

6.2.5 Other programming issues

6.2.5.1 Share resource between tasks

Flag indicating occupied resource
System resources, such as FlexPendant, file system and I/O signals, are available
from all tasks. However, if several task programs use the same resource, make
sure that they take turns using the resource, rather than using it at the same time.
To avoid having two task programs using the same resource at the same time, use
a flag to indicate that the resource is already in use. A boolean variable can be set
to true while the task program uses the resource.
To facilitate this handling, the instruction TestAndSet is used. It will first test the
flag. If the flag is false, it will set the flag to true and return true. Otherwise, it will
return false.

Example with flag and TestAndSet
In this example, two task programs try to write three lines each to the FlexPendant.
If no flag is used, there is a risk that these lines are mixed with each other. By using
a flag, the task program that first execute the TestAndSet instruction will write all
three lines first. The other task program will wait until the flag is set to false and
then write all its lines.
Main task program:

PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from MAIN";

TPWrite "Second line from MAIN";

TPWrite "Third line from MAIN";

tproutine_inuse := FALSE;

Background task program:
PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from BACK1";

TPWrite "Second line from BACK1";

TPWrite "Third line from BACK1";

tproutine_inuse := FALSE;

272 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.5.1 Share resource between tasks

6.2.5.2 Test if task controls mechanical unit

Two functions for inquiring
There are functions for checking if the task program has control of any mechanical
unit, TaskRunMec, or of a robot, TaskRunRob.
TaskRunMecwill return true if the task program controls a robot or other mechanical
unit. TaskRunRob will only return true if the task program controls a robot with
TCP.
TaskRunMec and TaskRunRob are useful when using MultiMove. With MultiMove
you can have several tasks controlling mechanical units, see Application
manual - MultiMove.

Note

For a task to have control of a robot, the parameter Type must be set to normal,
and the typeMotionTaskmust be set to YES. SeeSystemparameters on page261.

Example with TaskRunMec and TaskRunRob
In this example, the maximum speed for external equipment is set. If the task
program controls a robot, the maximum speed for external equipment is set to the
same value as the maximum speed for the robot. If the task program controls
external equipment but no robot, the maximum speed is set to 5000 mm/s.

IF TaskRunMec() THEN

IF TaskRunRob() THEN

!If task controls a robot

MaxExtSpeed := MaxRobSpeed();

ELSE

!If task controls other mech unit than robot

MaxExtSpeed := 5000;

ENDIF

ENDIF

Application manual - Controller software OmniCore 273
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.5.2 Test if task controls mechanical unit

6.2.5.3 taskid

taskid syntax
A task always has a predefined variable of type taskid that consists of the name
of the task and the suffix "Id". For example, the variable name of the MAIN task is
MAINId.

Code example
In this example, the module PART_A is saved in the task BACK1, even though the
Save instruction is executed in another task.
BACK1Id is a variable of type taskid that is automatically declared by the system.

Save \TaskRef:=BACK1Id, "PART_A"

\FilePath:="HOME:/DOORDIR/PART_A.MOD";

274 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.5.3 taskid

6.2.5.4 Avoid heavy loops

Background tasks loop continuously
A task program is normally executed continuously. This means that a background
task program is in effect an eternal loop. If this program does not have any waiting
instruction, the background task may use too much computer power and make the
controller unable to handle the other tasks.

Example
MODULE background_module

PROC main()

WaitTime 1;

IF di1=1 THEN

...

ENDIF

ENDPROC

ENDMODULE

If there was no wait instruction in this example and di1was 0, then this background
task would use up the computer power with a loop doing nothing.

Application manual - Controller software OmniCore 275
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

6 RAPID Program Features
6.2.5.4 Avoid heavy loops

This page is intentionally left blank

7 Communication
7.1 FTP&SFTP client [3116-1]

7.1.1 Introduction to FTP&SFTP client

Purpose
The purpose of FTP&SFTP Client is to enable the robot to access remote mounted
disks, for example a hard disk drive on a PC.
Here are some examples of applications:

• Backup to a remote computer.
• Load programs from a remote computer.

Network illustration

External computer

Ethernet TCP/IP

xx1900001202

Description
Several robots can access the same computer over an Ethernet network.
The FTP/SFTP mounted device is accessed by its name, as specified in the Name

system parameter.
Once the FTP/SFTP protocol is configured, the remote computer can be accessed
in the same way as the controller's internal hard disk.

What is included
The RobotWare option FTP&SFTP client gives you access to the system parameter
types FTP Client and SFTP Client.

Basic approach
This is the general approach for using FTP&SFTP client.

1 Configure an FTP/SFTP protocol to point out a disk or directory on a remote
computer that will be accessible from the robot.

2 Read and write to the remote computer in the same way as with the
controller's internal hard disk.

Continues on next page
Application manual - Controller software OmniCore 277
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

7 Communication
7.1.1 Introduction to FTP&SFTP client

SFTP supports the following servers:
• Rebex version 1.0.3
• CompleteFTP version 11.0.0
• Cerberus version 9.0.4.0

In certain SFTP servers, as Complete SFTP server, there is a configuration setting,
Timeout for idle sessions, which defines the time that the connection can be idle.
If no client requests are made during this time interval, the connection is closed.
Setting the value as No timeout will keep the connection alive, even though client
requests are not made.

Requirements
The external computer must have:

• TCP/IP stack
• FTP Server or SFTP Server

Directory listing style on FTP server
The FTP server must list directories in a UNIX style.
Example:
drwxrwxrwx 1 owner group 25 May 18 16:39 backups

The MS-DOS style does not work.

Tip

For Internet Information Services (IIS) in Windows, the directory listing style is
configurable.

Limitations
• When using the FTP client the maximum length for a file name is 99

characters.
• When using the FTP client the maximum length for a file path including the

file name is 200 characters. The whole path is included in the 200 characters,
not only the server path. When ordering a backup towards a mounted disk
all the directories created by the backup has to be included in the max path.

• When using the SFTP Client the maximum length for a file path including the
file name is 248 characters. The whole path is included in the 248 characters,
not only the server path. When ordering a backup towards a mounted disk
all the directories created by the backup has to be included in the max path.

Example FTP

ValueParameter

myFTPName

C:\robot_1Server path

• A backup is saved to myFTP/Backups/Backup_20130109
(27 characters)

Continues on next page
278 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

7 Communication
7.1.1 Introduction to FTP&SFTP client
Continued

• The path on the PC will be C:\robot_1\Backups\Backup_20130109
(34 characters)

• The longest file path inside this backup is
C:\robot_1\Backups\Backup_20130109\RAPID\TASK1\PROGMOD\myprogram.mod
(54+13 characters)

The maximum path length for this example first looks like 27 characters but is
actually 67 characters.

Example SFTP

ValueParameter

mySFTPName

• A backup is saved to mySFTP/Backups/Backup_20130109
(27 characters)

• The path on the PC will be \Backups\Backup_20130109
(24 characters)

• The longest file path inside this backup is
\Backups\Backup_20130109\RAPID\TASK1\PROGMOD\myprogram.mod
(44+13 characters)

The maximum path length for this example first looks like 27 characters but is
actually 57 characters.

System parameters
See Technical reference manual - System parameters.

Application manual - Controller software OmniCore 279
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

7 Communication
7.1.1 Introduction to FTP&SFTP client

Continued

7.2 NFS Client [3117-1]

7.2.1 Introduction to NFS Client

Purpose
The purpose of NFS Client is to enable the robot to access remote mounted disks,
for example a hard disk drive on a PC.
Here are some examples of applications:

• Backup to a remote computer.
• Load programs from a remote computer.

Description
Several robots can access the same computer over an Ethernet network.
The NFS mounted device is accessed by its name, as specified in the Name system
parameter.
Once the NFS application protocol is configured, the remote computer can be
accessed in the same way as the controller's internal hard disk.

What is included
The RobotWare option NFS Client gives you access to the system parameter type
Application protocol and its parameters:Name, Type, Transmission protocol,Server
address, Server type, Trusted, Local path, Server path, User ID, Group ID, and
Show Device.

Basic approach
This is the general approach for using NFS Client.

1 Configure an NFS protocol to point out a disk or directory on a remote
computer that will be accessible from the robot.

2 Read and write to the remote computer in the same way as with the
controller's internal hard disk.

Prerequisites
The external computer must have:

• TCP/IP stack
• NFS Server

Limitations
When using the NFS Client the maximum length for a file path including the file
name is 248 characters. The whole path is included in the 248 characters, not only
the server path. When ordering a backup towards a mounted disk all the directories
created by the backup has to be included in the max path.

Example

ValueParameter

myNFSName

Continues on next page
280 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

7 Communication
7.2.1 Introduction to NFS Client

ValueParameter

C:\robot_1Server path

• A backup is saved to myNFS/Backups/Backup_20130109
(27 characters)

• The path on the PC will be C:\robot_1\Backups\Backup_20130109
(34 characters)

• The longest file path inside this backup is
C:\robot_1\Backups\Backup_20130109\RAPID\TASK1\PROGMOD\myprogram.mod
(54+13 characters)

The maximum path length for this example first looks like 27 characters but is
actually 67 characters.

Application manual - Controller software OmniCore 281
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

7 Communication
7.2.1 Introduction to NFS Client

Continued

This page is intentionally left blank

8 User Interaction Application
8.1 RobotStudio Connect [3119-1]

Overview
RobotStudio is the programming, configuration and commissioning tool for
OmniCore controllers. RobotStudio acts directly on the active data in the controller
and enables activities like RAPID programming, update/booting of the systems
software and system configuration. Connecting RobotStudio directly to the local
management port is enabled by default, but connecting RobotStudio over a public
network requires this option RobotStudio Connect.

Application manual - Controller software OmniCore 283
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

8 User Interaction Application
8.1 RobotStudio Connect [3119-1]

8.2 FlexPendant Base Apps

Limited App Package [3120-1]
The option Limited App Package contains base functionality to operate the robot
system. This base version of software for the FlexPendant allows for the most
crucial functionality, like jogging the robot, calibration of the robot, basic operation
(start, stop, loading programs), read and write I/O signals, event log and operator
messages.

Essential App Package [3120-2]
The option Essential App Package includes features that will make it easier and
more efficient to work with the robot system. The jog functionality is improved with
3D illustrations, and dashboards makes it easy to view the system status at a
glance. This includes the option Limited App Package.

284 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

8 User Interaction Application
8.2 FlexPendant Base Apps

8.3 FlexPendant Independent Apps

Program Package [3151-1]
The option Program Package is required in order to create new and edit existing
RAPID programs on the FlexPendant. If the program package is not selected with
the FlexPendant, RobotStudio must instead be used on a separate PC to create
and edit RAPID programs.
The FlexPendant options are not tied to the FlexPendant hardware, but instead to
OmniCore controller. This means a FlexPendant runs the apps that are licensed
to the controller it is connected to. A shared FlexPendant can accordingly have
different apps on different robots.

Application manual - Controller software OmniCore 285
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

8 User Interaction Application
8.3 FlexPendant Independent Apps

This page is intentionally left blank

9 Engineering tools
9.1 RobotWare Add-In

Required for licensed Add-Ins.

Application manual - Controller software OmniCore 287
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

9 Engineering tools
9.1 RobotWare Add-In

9.2 Path Corrections [3123-1]

9.2.1 Overview

Purpose
The purpose of Path Corrections is to be able to make online adjustments of the
robot path according to input from sensors. With the set of instructions that Path
Corrections offers, the robot path can be compared and adjusted with the input
from sensors.

What is included
The RobotWare option Path Corrections gives you access to:

• the data type corrdescr

• the instructions CorrCon, CorrDiscon, CorrClear and CorrWrite

• the function CorrRead

Basic approach
This is the general approach for setting up Path Corrections. For a detailed example
of how this is done, see Code example on page 292.

1 Declare the correction generator.
2 Connect the correction generator.
3 Define a trap routine that determines the offset and writes it to the correction

generator.
4 Define an interrupt to frequently call the trap routine.
5 Call a move instruction using the correction. The path will be repeatedly

corrected.

Note

The instruction CorrWrite is intended with low speed and moderate values of
correction. Too aggressive values will be clamped. The correction values should
be tested in RobotStudio to confirm the performance.

Note

If two or more move instructions are called after each other with the \Corr switch,
it is important to know that all \Corr offsets are reset each time the robot starts
from a finepoint. So, when using finepoints, on the second Move instruction the
controller does not know that the path already has an offset. To avoid any strange
behavior it is recommended only to use zones together with the \Corr switch
and avoid finepoints.

Continues on next page
288 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

9 Engineering tools
9.2.1 Overview

Limitations
It is possible to connect several correction generators at the same time (for instance
one for corrections along the Z axis and one for corrections along the Y axis).
However, it is not possible to connect more than 5 correction generators at the
same time.
After a controller restart, the correction generators have to be defined once again.
The definitions and connections do not survive a controller restart.
The instructions can only be used in motion tasks.

Application manual - Controller software OmniCore 289
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

9 Engineering tools
9.2.1 Overview

Continued

9.2.2 RAPID components

Data types
This is a brief description of each data type in the option Path Corrections. For
more information, see the respective data type in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

corrdescr is a correction generator descriptor that is used as the
reference to the correction generator.

corrdescr

Instructions
This is a brief description of each instruction in the option Path Corrections. For
more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

CorrCon activates path correction. Calling CorrCon will connect a
correction generator. Once this connection is made, the path can be
continuously corrected with new offset inputs (for instance from a
sensor).

CorrCon

CorrDiscon deactivates path correction. Calling CorrDiscon will
disconnect a correction generator.

CorrDiscon

CorrClear deactivate path correction. Calling CorrClear will dis-
connect all correction generators.

CorrClear

CorrWrite sets the path correction values. Calling CorrWrite will
set the offset values to a correction generator.

CorrWrite

Functions
This is a brief description of each function in the option Path Corrections. For more
information, see the respective function in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

CorrRead reads the total correction made by a correction generator.CorrRead

290 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

9 Engineering tools
9.2.2 RAPID components

9.2.3 Related RAPID functionality

The argument \Corr
The optional argument\Corrcan be set for some move instructions. This will enable
path corrections while the move instruction is executed.
The following instructions have the optional argument\Corr:

• MoveL
• MoveC
• SearchL
• SearchC
• TriggL (only if the controller is equipped with the base functionality Fixed

Position Events)
• TriggC (only if the controller is equipped with the base functionality Fixed

Position Events)
• CapL (only if the controller is equipped with the option Continuous Application

Platform)
• CapC (only if the controller is equipped with the option Continuous Application

Platform)
• ArcL (only if the controller is equipped with the option RobotWare Arc)
• ArcC (only if the controller is equipped with the option RobotWare Arc)

For more information on these instructions, see respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

Interrupts
To create programs using Path Corrections, you need to be able to handle
interrupts. For more information on interrupts, see Technical reference manual -
RAPID Overview.

Application manual - Controller software OmniCore 291
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

9 Engineering tools
9.2.3 Related RAPID functionality

9.2.4 Code example

Linear movement with correction
This is a simple example of how to program a linear path with online path correction.
This is done by having an interrupt 5 times per second, calling a trap routine which
makes the offset correction.

Program code
VAR intnum int_no1;

VAR corrdescr id;

VAR pos sens_val;

PROC PathRoutine()

!Connect to the correction generator

CorrCon id;

!Setup a 5 Hz timer interrupt.

CONNECT int_no1 WITH UpdateCorr;

ITimer\Single, 0.2, int_no1

!Position for start of contour tracking

MoveJ p10,v100,z10,tool1;

!Run MoveL with correction.

MoveL p20,v100,z10,tool1\Corr;

!Remove the correction generator.

CorrDiscon id;

!Remove the timer interrupt.

IDelete int_no1;

ENDPROC

TRAP UpdateCorr

!Call a routine that read the sensor

ReadSensor sens_val.x, sens_val.y, sens_val.z;

!Execute correction

CorrWrite id, sens_val;

!Setup interrupt again

IDelete int_no1;

CONNECT int_no1 WITH UpdateCorr;

ITimer\Single, 0.2, int_no1;

ENDTRAP

292 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

9 Engineering tools
9.2.4 Code example

9.3 Auto Acknowledge Input

Description
The RobotWare base functionalityAuto Acknowledge Input is an option that enables
a system input which will acknowledge the dialog presented on the FlexPendant
when switching the operator mode from manual to auto with the key switch on the
robot controller.

WARNING

Note that using such an input will be contrary to the regulations in the safety
standard ISO 10218-1 chapter 5.3.5 Single point of control with following text:
"The robot control system shall be designed and constructed so that when the
robot is placed under local pendant control or other teaching device control,
initiation of robot motion or change of local control selection from any other
source shall be prevented."
Thus it is absolutely necessary to use other means of safety to maintain the
requirements of the standard and the machinery directive and also to make a
risk assessment of the completed cell. Such additional arrangements and risk
assessment is the responsibility of the system integrator and the system must
not be put into service until these actions have been completed.

Limitations
The system parameter cannot be defined using the FlexPendant or RobotStudio,
only with a text string in the configuration file.

Activate Auto Acknowledge Input
The robot system must be installed with the option Auto Acknowledge Input using
the Modify Installation function.
Use the following procedure to activate the system input for Auto Acknowledge
Input.

Action

Save a copy of the configuration file sys.cfg, using the FlexPendant or RobotStudio.1

Edit the configuration file sys.cfg, using a text editor. Add the following line in the
group SYSSIG_IN:

-Name "my_signal_name" -Action "AckAutoMode"

2

my_signal_name is the name of the configured digital input signal that should be
used as the system input.

Save the file and reload it to the controller.3

Restart the system to activate the signal.4

Application manual - Controller software OmniCore 293
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

9 Engineering tools
9.3 Auto Acknowledge Input

This page is intentionally left blank

10 Tool control options
10.1 Servo Tool Change [3110-1]

10.1.1 Overview

Purpose
The purpose of Servo Tool Change is to be able to change tools online.
With the option Servo Tool Change it is possible to disconnect the cables to the
motor of an additional axis and connect them to the motor of another additional
axis. This can be done on the run, in production.
This option is designed with servo tools in mind, but can be used for any type of
additional axes.
Examples of advantages are:

• One robot can handle several tools.
• Less equipment is needed since one drive-measurement system is shared

by several tools.

What is included
The RobotWare option Servo Tool Change enables:

• changing tool online
• up to 8 different servo tools to change between.

Note that the option Servo Tool Change only provides the software functionality.
Hardware, such as a tool changer is not included.

Basic approach
This is the general approach for using Servo Tool Change. For a more detailed
description of how this is done, see Tool change procedure on page 301.

1 Deactivate the first tool.
2 Disconnect the first tool from the cables.
3 Connect the second tool to the cables.
4 Activate the second tool.

Application manual - Controller software OmniCore 295
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.1 Overview

10.1.2 Requirements and limitations

Additional axes
To use Servo Motor Control, you must have the option Additional Axes. All additional
axes used by servo motor control must be configured according to the instructions
in Application manual - Additional axes.

Tool changer
To be able to change tools in production with a plug-in mechanism, a mechanical
tool changer interface is required.

en0300000549

All cables are connected to the tool changer. The tool changer interface includes
connections for signals, power, air, water, or whatever needs to be transmitted to
and from the tool.

Up to 8 tools
Up to 8 additional axes (servo tools or other axes) can be installed simultaneously
in one robot controller. Some of them (or all) may be servo tools sharing a tool
changer.

Moving deactivated tool
The controller remembers the position of a deactivated tool. When the tool is
reconnected and activated this position is used.
If the servo tool axis is moved during deactivation, the position of the axis might
be wrong after activation, and this will not be detected by the controller.

Continues on next page
296 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.2 Requirements and limitations

The position after activation will be correct if the axis has not been moved, or if
the movement is less than 0.5 motor revolutions.

Tip

If you have the Spot Servo option you can use tool change calibration.
After a tool is activated, use the instruction STCalib to calibrate the tool. This
will adjust any positional error caused by tool movements during deactivation.

Activating wrong tool
It is important to only activate a mechanical unit that is connected.
An activation of the wrong mechanical unit may cause unexpected movements or
errors. The same errors occur if a tool is activated when no tool at all is connected.

Tip

A connection relay can be configured so that activation of a mechanical unit is
only allowed when it is connected. See Connection relay on page 299.

Application manual - Controller software OmniCore 297
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.2 Requirements and limitations

Continued

10.1.3 Configuration

Configuration overview
The option Servo Tool Change allows configuration of several tools for the same
additional axis.
One individual set of parameters is installed for each gun tool.

How to configure each tool
Each tool is configured the same way as if it was the only tool. For information on
how to do this, see Application manual - Additional axes.
The parameter Deactivate PTC superv. at disconnect, in the type Mechanical Unit,
must be set to Yes.
The parameter Disconnect at Deactivate, in the type Measurement Channel, must
be set to Yes.
The parameter Logical Axis, in the type Joint, can be set to the same number for
several tools. Since the tools are never used at the same time, the tools are allowed
to use the same logical axis.
The parameter allow_activation_from_any_motion_task, in the type Mechanical
Unit, must be set for the specific servo gun. The servo gun .cfg files are created
by the servo gun manufacturer.
For a detailed description of the respective parameter, see Technical reference
manual - System parameters.

298 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.3 Configuration

10.1.4 Connection relay

Overview
To make sure a disconnected mechanical unit is not activated, a connection relay
can be used. A connection relay can prevent a mechanical unit from being activated
unless a specified digital signal is set.
Some tool changers support I/O signals that specify which gun is currently
connected. Then a digital input signal from the tool changer is used by the
connection relay.
If the tool changer does not support I/O signals, a similar behavior can be created
with RAPID instructions. Set a digital output signal to 1 with the instruction SetDO

each time the tool is connected, and set the signal to 0 when the tool is
disconnected.

System parameters
This is a brief description of each parameter used to configure a connection relay.
For more information, see Technical reference manual - System parameters.
The following parameters have to be set for the type Mechanical Unit in the topic
Motion:

DescriptionParameter

The name of the relay to use.Use Connection
Relay Corresponds to the name specified in the parameter Name in the type

Relay.

The following parameters must be set for the type Relay in the topic Motion:

DescriptionParameter

Name of the relay.Name
Used by the parameter Use Connection Relay in the type Mechanical Unit.

The name of the digital signal used to indicate if it should be possible to
activate the mechanical unit.

Input Signal

Example of connection relay configuration
This is an example of how to configure connection relays for two gun tools. gun1
can only be activated when signal di1 is 1, and gun2 can only be activated when
di2 is 1.
If the tool changer sets di1 to 1 only when gun1 is connected, and di2 to 1 only
when gun2 is connected, there is no risk of activating the wrong gun.
The following parameter values are set for gun1 and gun2 in the type Mechanical
Unit:

Use Connection RelayName

gun1_relaygun1

gun2_relaygun2

Continues on next page
Application manual - Controller software OmniCore 299
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.4 Connection relay

The following parameter values are set for gun1 and gun2 in the type Relay:

Input SignalName

di1gun1_relay

di2gun2_relay

300 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.4 Connection relay
Continued

10.1.5 Tool change procedure

How to change tool
This is a description of how to change from gun1 to gun2.

ActionStep

Deactivate gun1 with the instruction:1
DeactUnit gun1;

Disconnect gun1 from the tool changer.2

Connect gun2 to the tool changer.3

Activate gun2 with the instruction:4
ActUnit gun2;

Optional but recommended:5
Calibrate gun2 with the instruction:
STCalib gun1 \ToolChg;

Note that this calibration requires option Servo Tool Control or Spot Servo.

Application manual - Controller software OmniCore 301
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.5 Tool change procedure

10.1.6 Jogging servo tools with activation disabled

Overview
Only one of the servo tools used by the tool changer may be activated at a time,
the others are set to activation disabled. This is to make sure that the user is jogging
the servo tool presently connected with right configuration.

What to do when Activation disabled appears
Follow these steps when you need to jog a servo tool but cannot activate the unit
because activation is disabled.

ActionStep

Make sure that the right servo tool is mounted on the tool changer. If the wrong
tool is mounted, see Tool change procedure on page 301.

1.

If no tool is activated, open the RAPID execution and activate the right tool.2.

If the right tool is mounted on the tool changer, deactivate the wrong tool and ac-
tivate the right tool from RAPID execution.

3.

302 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.1.6 Jogging servo tools with activation disabled

10.2 Tool Control [3109-1]

10.2.1 Overview

Purpose
Tool Control can be used to control a servo tool, for example in a spot weld
application. Tool Control makes it possible to close the tool to a specific plate
thickness and force, and maintain the force during the process until the tool is
requested to be opened.

What is included
Tool Control gives you access to:

• RAPID instructions to open, close and calibrate servo tools
• RAPID instructions for tuning system parameter values
• RAPID functions for checking status of servo tools
• system parameters to configure servo tools

Basic approach
This is the general approach for using Tool Control.

1 Configure and calibrate the servo tool.
2 Perform a force calibration.
3 Create the RAPID program.

Prerequisites
A servo tool is an additional axis. Required hardware, such as drive module and
measurement board, is specified in Application manual - Additional axes.

Application manual - Controller software OmniCore 303
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.1 Overview

10.2.2 Servo tool movements

Closing and opening of a servo tool
The servo tool can be closed to a predefined thickness and tool force. When the
tool reaches the programmed contact position, the movement is stopped and there
is an immediate switch from position control mode to force control mode. In the
force control mode a motor torque will be applied to achieve the desired tool force.
The force remains constant until an opening is ordered. Opening of the tool will
reduce the tool force to zero and move the tool arm back to the pre-close position.

Synchronous and asynchronous movements
Normally a servo tool axis is moved synchronous with the robot movements in
such a way that both movements will be completed exactly at the same time.
However the servo tool may be closed asynchronously (independent of current
robot movement). The closing will immediately start to run the tool arm to the
expected contact position (thickness). The closing movement will interrupt an
on-going synchronous movement of the tool arm.
The tool opening may also take place while the robot is moving. But it is not possible
if the robot movement includes a synchronized movement of the servo tool axis.
A motion error, "tool opening could not synchronize with robot movement", will
occur.

304 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.2 Servo tool movements

10.2.3 Tip management

About tip management
The tip management functionality will find and calibrate the contact position of the
tool tips automatically. It will also update and monitor the total tip wear of the tool
tips.
The tips can be calibrated using the RAPID instruction STCalib (see Instructions
on page 308). Typically, two tool closings will be performed during a calibration.
Three different types of calibrations are supported: tip wear, tip change and tool
change. All three will calibrate the contact position of the tips. The total tip wear
will, however, be updated differently by these methods.

Tip wear calibration
As the tips are worn down, for example when spot welding, they need to be dressed.
After the tip dressing, a tip wear calibration is required. The tool contact position
is calibrated and the total tip wear of the tool is updated. The calibration movements
are fast and the switch to force control mode will take place at the zero position.
This method must only be used to make small position adjustments (< 3 mm)
caused by tip wear/tip dressing.

Tip

A variable in your RAPID program can keep track of the tip wear and inform you
when the tips needs to be replaced.

Tip change calibration
The tip change calibration is to be used after mounting a new pair of tips, for
example when spot welding. The tool contact position is calibrated and the total
tip wear of the tool is reset. The first calibration movement is slow in order to find
the unknown contact position and switch to force control. The second calibration
movement is fast. This calibration method will handle big position adjustments of
the servo tool.
This calibration may be followed by a tool closing in order to squeeze the tips in
place. A new tip change calibration is then done to update possible position
differences after the tip squeeze.

Tool change calibration
The tool change calibration is to be used after reconnecting and activating a servo
tool. The tool contact position is calibrated and the total tip wear of the tool remains
unchanged. The first calibration movement is slow in order to find the unknown
tip collision position and switch to force control. The second calibration movement
is fast. This calibration method will handle big position adjustments of the tool.
The method should always be used after reconnecting a tool since the activation
will restore the latest known position of the tool, and that position may be different
from the actual tool position; the tool arm may have been moved when

Continues on next page
Application manual - Controller software OmniCore 305
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.3 Tip management

disconnected. This calibration method will handle big position adjustments of the
tool.

Tip

Tool change calibration is most commonly used together with the RobotWare
option Servo Tool Change.

306 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.3 Tip management
Continued

10.2.4 Supervision

Max and min stroke
An out of range supervision will stop the movement if the tool is reaching max
stroke or if it is closed to contact with the tips (reaching min stroke). See Upper
Joint Bound and Lower Joint Bound in Arm on page 311.

Motion supervision
During the position control phase of the closing/opening, motion supervision is
active for the servo tool to detect if the arm collides or gets stuck. A collision will
cause a motion error and the motion will be stopped.
During the force control phase, the motion supervision will supervise the tool arm
position not to exceed a certain distance from the expected contact position. See
parameter Max Force Control Position Error in Supervision Type on page 312.

Maximum torque
There is a maximum motor torque for the servo tool that never will be exceeded
in order to protect the tool from damage. If the force is programmed out of range
according to the tools force-torque table, the output force will be limited to this
maximum allowed motor torque and a motion warning will be logged. See parameter
Max Force Control Motor Torque in SG Process on page 309.

Speed limit
During the force control phase there is a speed limitation. The speed limitation will
give a controlled behavior of the tool even if the force control starts before the tool
is completely closed. See Speed limit 1- 6 in Force Master Control on page 310.

Application manual - Controller software OmniCore 307
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.4 Supervision

10.2.5 RAPID components

About the RAPID components
This is an overview of all instructions, functions, and data types in Tool Control.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types.

Instructions

DescriptionInstruction

Close the servo tool with a predefined force and thickness.STClose

Open the servo tool.STOpen

Calibrate the servo tool.STCalib

An argument determines which type of calibration will be performed:
• \ToolChg for tool change calibration
• \TipChg for tip change calibration
• \TipWear for tip wear calibration

Tune motion parameters for the servo tool. A temporary value can be
set for a parameter specified in the instruction.

STTune

Reset tuned motion parameters for the servo tool. Cancel the effect of
all STTune instructions.

STTuneReset

Functions

DescriptionFunction

Test if the servo tool is closed.STIsClosed

Test if the servo tool is open.STIsOpen

Tests if a servo tool is calibrated.STIsCalib

Calculate the motor torque for a servo tool.STCalcTorque

Calculate the force for a servo tool.STCalcForce

Tests if a mechanical unit is a servo tool.STIsServoTool

Tests if servo tool is in independent mode.STIsIndGun

Data types
Tool Control includes no RAPID data types.

308 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.5 RAPID components

10.2.6 System parameters

About the system parameters
When using a servo tool, a motion parameter file for the tool is normally installed
on the controller. A servo tool is a specific variant of an additional axis and the
description of how to configure the servo tool is found in Application
manual - Additional axes.
In this section, the parameters used in combination with Tool Control is briefly
described. For more information, see the respective parameter in Technical
reference manual - System parameters.

SG Process
These parameters belong to the type SG Process in the topic Motion.
SG Process is used to configure the behavior of a servo gun (or other servo tool).

DescriptionParameter

Adjustment of the ordered minimum close time of the gun.Close Time Adjust

Adjustment of the ordered position (plate thickness) where force
control should start, when closing the gun.

Close Position Adjust

Delays the close ready event after achieving the ordered force.Force Ready Delay

Max allowed motor torque for force control. Commanded force will
be reduced, if the required motor torque is higher than this value.

Max Force Control
Motor Torque

Anticipation of the open ready event. This can be used to synchron-
ize the gun opening with the next robot movement.

Post-synchronization
Time

Defines the number of times the servo gun closes during a tip wear
calibration.

Calibration Mode

The minimum tip force used during a tip wear calibration.Calibration Force Low

The maximum tip force used during a tip wear calibration.Calibration ForceHigh

The time that the servo gun waits in closed position during calibra-
tion.

Calibration Time

Defines the number of points in the force-torque relation specified
in Tip Force 1 - 10 and Motor Torque 1 - 10.

Number of Stored
Forces

Tip Force 1 defines the tip force that corresponds to the motor torque
in Motor Torque 1.

Tip Force 1 - 10

Tip Force 2 corresponds to Motor Torque 2, etc.

Motor Torque 1 defines the motor torque that corresponds to the
tip force in Tip Force 1.

Motor Torque 1- 10

Motor Torque 2 corresponds to Tip Force 2, etc.

Defines the joint position at each force level in the force calibration
table.

Squeeze Position 1 -
10

Defines how long the force will be maintained if a soft stop occurs
during constant force.

Soft Stop Timeout

Continues on next page
Application manual - Controller software OmniCore 309
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters

Force Master
These parameters belong to the type Force Master in the topic Motion.
Force Master is used to define how a servo tool, typically a servo gun, behaves
during force control. The parameters only affect the servo tool when it is in force
control mode.

DescriptionParameter

The frequency limit for the low pass filter for reference values.References Bandwidth

Determines if the ramping of the tip force should use a constant
time or a constant gradient.

Use ramp time

Determines how fast force is built up while closing the tool when
Use ramp time is set to No.

Ramp when Increase
Force

Determines how fast force is built up while closing the tool when
Use ramp time is set to Yes.

Ramp time

Frequency limit for the low pass filter used for tip wear calibration.Collision LP Bandwidth

Determines how hard the tool tips will be pressed together during
the first gun closing of new tips calibrations and tool change cal-
ibrations.

Collision Alarm Torque

Determines the servo gun speed during the first gun closing of
new tips calibrations and tool change calibrations.

Collision Speed

Defines the distance the servo tool has gone beyond the contact
position when the motor torque has reached the value specified
in Collision Alarm Torque.

Collision Delta Position

Determines how close to the ordered plate thickness the tool tips
must be before the force control starts.

Max pos err. closing

Delays the starting of torque ramp when force control is started.Delay ramp

Determines if the feedback position should be used instead of
reference position when deciding the contact position.

Ramp to real contact

Force Master Control
These parameters belong to the type Force Master Control in the topic Motion.
ForceMaster Control is used to set the speed limit and speed loop gain as functions
of the torque.

DescriptionParameter

The number of points used to define speed limit and speed loop gain
as functions of the torque. Up to 6 points can be defined.

No. of speed limits

The torque levels, corresponding to the ordered tip force, for which
the speed limit and speed loop gain values are defined.

torque 1 - torque 6

Speed Limit 1 to Speed Limit 6 are used to define the maximum speed
depending on the ordered tip force.

Speed Limit 1 - 6

Kv 1 to Kv 6 are used to define the speed loop gain for reducing the
speed when the speed limit is exceeded.

Kv 1 - 6

Continues on next page
310 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters
Continued

Arm
These parameters belong to the type Arm in the topic Motion.
The type Arm defines the characteristics of an arm.

DescriptionParameter

Defines the upper limit of the working area for the joint.Upper Joint Bound

Defines the lower limit of the working area for the joint.Lower Joint Bound

Acceleration Data
These parameters belong to the type Acceleration Data in the topic Motion.
Acceleration Data is used to specify some acceleration characteristics for axes
without any dynamic model.

DescriptionParameter

Worst case motor acceleration.Nominal Acceleration

Worst case motor deceleration.Nominal Deceleration

Indicates how fast the acceleration can be increased.Acceleration Derivate Ratio

Indicates how fast the deceleration can be increased.Deceleration Derivate Ratio

Motor Type
These parameters belong to the type Motor Type in the topic Motion.
Motor Type is used to describe characteristics for a motor.

DescriptionParameter

Defines the number of pole pairs for the motor.Pole Pairs

The inertia of the motor, including the resolver but excluding the
brake.

Inertia

The continuous stall torque, i.e. the torque the motor can produce at
no speed and during an infinite time.

Stall Torque

Nominal voltage constant. The induced voltage (phase to phase) that
corresponds to the speed 1 rad/s.

ke Phase to Phase

Max current without irreversible magnetization.Max Current

Nominal winding resistance per phase at 20 degrees Celsius.Phase Resistance

Nominal winding inductance per phase at zero current.Phase Inductance

Motor Calibration
These parameters belong to the type Motor Calibration in the topic Motion.
Motor Calibration is used to calibrate a motor.

DescriptionParameter

Defines the position of the motor (resolver) when the rotor is in the
electrical zero position relative to the stator.

Commutator Offset

Defines the position of the motor (resolver) when it is in the calibration
position.

Calibration Offset

Continues on next page
Application manual - Controller software OmniCore 311
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters

Continued

Stress Duty Cycle
These parameters belong to the type Stress Duty Cycle in the topic Motion.
Stress Duty Cycle is used for protecting axes, gearboxes, etc.

DescriptionParameter

The absolute highest motor speed to be used.Speed Absolute Max

The absolute highest motor torque to be used.Torque Absolute Max

Supervision Type
These parameters belong to the type Supervision Type in the topic Motion.
Supervision Type is used for continuos supervision of position, speed and torque.

DescriptionParameter

When a servo gun is in force control mode it is not allowed to move
more than the distance specified in Max Force Control Position Error.
This supervision will protect the tool if, for instance, one tip is lost.

Max Force Control
Position Error

Speed error factor during force control.Max Force Control
Speed Limit If the speed limits, defined in the type Force Master Control, multiplied

with Max Force Control Speed Limit is exceeded, all movement is
stopped.

Transmission
These parameters belong to the type Transmission in the topic Motion.
Transmission is used to define the transmission gear ratio between a motor and
its axis.

DescriptionParameter

Defines if the axis is rotating or linear.Rotating Move

Defines the transmission gear ratio between motor and joint.Transmission Gear Ratio

Lag Control Master 0
These parameters belong to the type Lag Control Master 0 in the topic Motion.
Lag Control Master 0 is used for regulation of axes without any dynamic model.

DescriptionParameter

Defines if the position regulation should use feed forward of speed
and torque values.

FFW Mode

Proportional gain in the position regulation loop.Kp, Gain Position Loop

Proportional gain in the speed regulation loop.Kv, Gain Speed Loop

Integration time in the speed regulation loop.Ti Integration Time
Speed Loop

Continues on next page
312 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters
Continued

Uncalibrated Control Master 0
These parameters belong to the type Uncalibrated Control Master 0 in the topic
Motion.
Uncalibrated Control Master 0 is used to regulate uncalibrated axes.

DescriptionParameter

Proportional gain in the position regulation loop.Kp, Gain Position Loop

Proportional gain in the speed regulation loop.Kv, Gain Speed Loop

Integration time in the speed regulation loop.Ti Integration Time Speed Loop

The maximum allowed speed for an uncalibrated axis.Speed Max Uncalibrated

The maximum allowed acceleration for an uncalibrated
axis.

Acceleration Max Uncalibrated

The maximum allowed deceleration for an uncalibrated
axis.

Deceleration Max Uncalibrated

Application manual - Controller software OmniCore 313
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters

Continued

10.2.7 Commissioning and service

Commissioning the servo tool
For a new servo tool, follow these steps for installing and commissioning:

ActionStep

Install the servo tool according to the description in Application manual - Additional
axes.

1

Load a .cfg file with the servo tool configuration. For detailed description on how
to do this, see Operating manual - RobotStudio.

2

If you do not have any .cfg file for the servo tool, you can load a template file and
configure the system parameters with the values of your servo tool. Template files
are found in the RobotWare distribution, see Template file locations on page 314.

Use the RAPID instruction STTune and iterate to find the optimal parameter values.
Once found, these optimal values should be written to the system parameters to
be permanent.

3

Fine calibrate the servo tool, see Fine calibration on page 316.4

Unless force calibration was included in a loaded .cfg file, perform a force calibra-
tion.

5

Template file locations
The template files can be obtained from the PC or the IRC5 controller.

• In the RobotWare installation folder in RobotStudio: ...\RobotPackages\
RobotWare_RPK_<version>\utility\AdditionalAxis\

• On the IRC5 Controller:
<SystemName>\PRODUCTS\<RobotWare_xx.xx.xxxx>\utility\AdditionalAxis\

Note

Navigate to the RobotWare installation folder from the RobotStudio Add-Ins tab,
by right-clicking on the installed RobotWare version in the Add-Ins browser and
selecting Open Package Folder.

Disconnect/reconnect a servo tool
If the servo tool is deactivated, using the DeactUnit instruction, it may be
disconnected and removed. The tool position at deactivation will be restored when
the tool is connected and reactivated. Make a tool change calibration to make sure
the tip position is OK.
The whole process of changing a tool can be performed by a RAPID program if
you use the RobotWare option Servo Tool Change and the instruction STCalib.

Recover from accidental disconnection
If the motor cables are disconnected by accident when the servo tool is active, the
system will go into system failure state. After restart of the system the servo tool
must be deactivated in order to jog the robot to a service position.
Deactivation may be performed from the Joggingwindow. Tap onActivate..., select
the servo tool and tap on Deactivate.

Continues on next page
314 Application manual - Controller software OmniCore

3HAC066554-001 Revision: N
© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.7 Commissioning and service

After service / repair the revolution counter must be updated since the position
has been lost, see Update revolution counter on page 316.

Application manual - Controller software OmniCore 315
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.7 Commissioning and service

Continued

10.2.8 Mechanical unit calibrations

Fine calibration
Fine calibration must be performed when installing a new servo tool, or if the servo
tool axis is in state ‘Not Calibrated’.
For this, it is recommended to create a service routine using the following
instructions:

STCalib "ToolName" \TipChg;

STCalib "ToolName" \TipWear;

Update revolution counter
An update of the revolution counter must be performed if the position of the axis
is lost. If this happens, this is indicated by the calibration state ‘Rev. Counter not
updated’.
For this, it is recommended to use the same service routine as for the fine
calibration.

316 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.8 Mechanical unit calibrations

10.2.9 RAPID code example

How to use the code package
The normal programming technique for Tool Control is to customize shell routines
based on the example code below. These shell routines are then called from your
program.

Using shell routines
This example shows a main routine in combination with a customized routine
(rMoveSpot) that uses the standard servo tool instructions. The external process
(for example a weld timer) is indicated with the routine rWeld.

PROC main()

MoveJ p1, v500, z50, weldtool;

MoveL p2, v1000, z50, weldtool;

! Perform weld process

rMoveSpot weldpos1, v2000, curr_gun_name, 1000, 2, 1,

weldtool\WObj:=weldwobj;

rMoveSpot weldpos2, v2000, curr_gun_name, 1000, 2, 1,

weldtool\WObj:=weldwobj;

rMoveSpot weldpos3, v2000, curr_gun_name, 1500, 3, 1,

weldtool\WObj:=weldwobj;

MoveL p3, v1000, z50, weldtool;

ENDPROC

PROC rMoveSpot (robtarget ToPoint,

speeddata Speed,

gunname Gun,

num Force,

num Thickness,

PERS tooldata Tool

\PERS wobjdata WObj)

! Move the gun to weld position.

! Always use FINE point to prevent too early closing.

MoveL ToPoint, Speed, FINE, weldtool \WOIbj=WObj;

STClose Gun, Thickness;

rWeld;

STOpen Gun;

ENDPROC

PROC rWeld()

! Request weld start from weld timer

SetDO doWeldstart,1;

! Wait until weld is performed

WaitDI diWeldready,1;

SetDO doWeldstart,0;

ENDPROC

Application manual - Controller software OmniCore 317
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

10 Tool control options
10.2.9 RAPID code example

This page is intentionally left blank

Index
3
3rd party software, 14

A
Absolute Accuracy, 175
Absolute Accuracy calibration, 185
Absolute Accuracy compensation, 183
Absolute Accuracy verification, 186
Acceleration Data, 311
Acceleration Derivate Ratio, 311
Acceleration Max Uncalibrated, 313
accidental disconnection, 314
acknowledge messages, 168
activate Absolute Accuracy, 178
activate supervision, 237
activation disabled, 302
actor signals, 150–151
additional axes, 303
additional axis, 113
Advanced RAPID, 17
Advanced Shape Tuning, 195
AliasIO, 24–25
alignment, 189
analog signal, 48
Analog Signal Interrupt, 48
AND, 151
ArgName, 46
argument name, 46
Arm, 311
arm replacement, 179
asynchronous movements, 304
Auto acknowledge input, 12–13, 293
automatic friction tuning, 196
axis, 245
axis reset, 245

B
binary communication, 132
binary data, 168
birth certificate, Absolute Accuracy, 187
BitAnd, 19
BitCheck, 19
BitClear, 19
bit functionality, 18
BitLSh, 19
BitNeg, 19
BitOr, 19
BitRSh, 19
BitSet, 19
BitXOr, 19
BookErrNo, 41
byte, 19
ByteToStr, 19

C
calibrate follower axis, 120
calibrate tool, 193
calibration data, 178
Calibration Force High, 309
Calibration Force Low, 309
Calibration Mode, 309
Calibration Offset, 311
calibration process, 185
Calibration Time, 309

calibration tools, 177
CalibWare, 177
cell alignment, 189
certificate, Absolute Accuary, 187
change calibration data, 178
character based communication, 132
Check unresolved references, Task type, 261
CirPathMode, 215
ClearRawBytes, 137
Close, 133
CloseDir, 141
Close position adjust, 309
Close time adjust, 309
code example, 317
collision, 228
Collision Alarm Torque, 310
Collision Avoidance, 239
Collision Delta Position, 310
collision detection

YuMi robots, 226
Collision Detection Memory, 231
Collision Error Handler, 232
Collision LP Bandwidth, 310
Collision Speed, 310
commissioning, 314
common data, 265
communication, 131
Commutator Offset, 311
compensation, 183
compensation parameters, 175, 188
compliance errors, 182
configuration

Absolute Accuracy, 178
configuration functionality, 27
configure Collision Detection, 235
connection relay, 299
coordinate systems, 189
CopyFile, 141
CopyRawBytes, 137
Corr argument, 291
CorrClear, 290
CorrCon, 290
corrdescr, 290
CorrDiscon, 290
correction generator, 288
CorrRead, 290
CorrWrite, 290
cross connections, 150
cut plane, 213
cut shape, 218
Cyclic bool, 101
Cyclic bool settings, 107
Cyclic bool system parameters, 107

D
data, 156
datapos, 22
data search functionality, 21
data types

Multitasking, 263
data variable example

Electronically Linked Motors, 129
data variables

Electronically Linked Motors, 127
Deactivate PTC superv. at disconnect, 298
deactivate supervision, 237
Deceleration Derivate Ratio, 311

Application manual - Controller software OmniCore 319
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Index

Deceleration Max Uncalibrated, 313
declarations, 265
deflection, 183
Delay ramp, 310
digital I/O signals, 150
dir, 141
directory management, 140
discarded message, 158
Disconnect at Deactivate, 298
disconnection, 314
dispatcher, 270
displacement, 128

E
Electronically Linked Motors, 113
errdomain, 38
error interrupts, 37
error sources in accuracy, 182
ErrRaise, 38
errtype, 38
Ethernet, 277, 280
event messages, 40
event number, 40
Event Preset Time, 147
external axes, 227
external axis, 245

F
fake target, 183
false triggering, 238
FFW Mode, 312
Fieldbus Command Interface, 109
FIFO, 157
file communication, 131
file management, 140
FileSize, 141
file structures, 140
fine calibration, 316
fixed position events, 144
fixture alignment, 190
FlexPendant, 272
follower, 113
Follower to Joint, 115
Force Master, 310
Force Master Control, 310
Force Ready Delay, 309
frame relationships, 192
frames, 189
FricIdEvaluate, 202
FricIdInit, 202
FricIdSetFricLevels, 202
friction compensation, 195
Friction FFW Level, 200
Friction FFW On, 200
Friction FFW Ramp, 200
friction level tuning, 196
FSSize, 141
functions

Advanced RAPID, 46
Multitasking, 263

G
General RAPID, 232
GetDataVal, 22
GetMaxNumberOfCyclicBool, 108
GetNextCyclicBool, 108
GetNextSym, 22

GetNumberOfCyclicBool, 108
GetTrapData, 38
group I/O signals, 150

I
IError, 38
IndAMove, 248
IndCMove, 248
Ind collision stop without brake, 232
IndDMove, 248
Independent Axes, 245
independent joint, 227
Independent Joint, 247
Independent Lower Joint Bound, 247
independent movement, 245
Independent Upper Joint Bound, 247
IndInpos, 248
IndReset, 248
IndRMove, 248
IndSpeed, 248
Inertia, 311
Input Signal, 299
installation, 314
instructions

Advanced RAPID, 46
Multitasking, 263

interrupt, 48, 157, 266
interrupt functionality, 37
iodev, 133
IPers, 38
IRMQMessage, 161
IsCyclicBool, 108
IsFile, 141
ISignalAI, 49
ISignalAO, 49
IsStopStateEvent, 46

J
Jog Collision Detection, 231, 235
Jog Collision Detection Level, 231
Jog Collision Detection Level, 235
Joint, 115
joint zones, 219

K
ke Phase to Phase, 311
kinematic errors, 182
Kp, Gain Position Loop, 312–313
Kv 1 - 6, 310
Kv, Gain Speed Loop, 312
Kv, Gain Speed Loop, 313

L
l_f_axis_name, 127
l_f_axis_no, 127
l_f_mecunt_n, 127
l_m_axis_no, 127
l_m_mecunt_n, 127
Lag Control Master 0, 312
licenses, 14
Linked M Process, 115
load calibration data, 178
Load Identification, 177
Lock Joint in Ipol, 115
logical AND, 152
Logical Axis, 298
Logical Cross Connections, 150

320 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Index

logical operations, 150
logical OR, 152
loss of accuracy, 181
lost message, 158
lost queue, 158
Lower Joint Bound, 311

M
Main entry, Task type, 261
maintenance, 179
MakeDir, 141
manipulator replacement, 180
Manipulator Supervision, 231
Manipulator Supervision Level, 231
manual friction tuning, 198
master, 113
Master Follower kp, 116
Max Current, 311
Max Follower Offset, 115
Max Force Control Motor Torque, 309
Max Force Control Position Error, 312
Max Force Control Speed Limit, 312
Max Offset Speed, 115
Max pos err. closing, 310
measurement system, 248
mechanical unit, 273
merge of messages, 168
Motion Planner, 231
Motion Process Mode, 203
MotionSup, 233, 237
Motion Supervision, 231
Motion Supervision Max Level, 231
Motion System, 232
MotionTask, Task type, 262
Motor Calibration, 311
motor replacement, 179
Motor Torque 1- 10, 309
Motor Type, 311
MotSupOn, 234
MotSupTrigg, 234
MoveCSync, 146
MoveJSync, 146
MoveLSync, 146
Multitasking, 259

N
NFS Client, 280
No. of speed limits, 310
Nominal Acceleration, 311
Nominal Deceleration, 311
non printable characters, 168
NORMAL, 261
NoSafety, 261
NOT, 152
Not Calibrated, 316
Number of Stored Forces, 309

O
offset_ratio, 127
Offset Adjust Delay Time, 115
Offset Speed Ratio, 115
Open, 133
OpenDir, 141
open source software, OSS, 14
OR, 151

P
PackDNHeader, 110
PackRawBytes, 137
parameters

accuracy compensation, 188
path, 31
Path Collision Detection, 231, 235
Path Collision Detection Level, 231, 235
path correction, 288
path offset, 288
pathrecid, 252
PathRecMoveBwd, 252
PathRecMoveFwd, 252
path recorder, 255
Path Recovery, 251
PathRecStart, 252
PathRecStop, 252
PathRecValidBwd, 252
PathRecValidFwd, 252
PC SDK client, 156
persistent variables, 264
PFRestart, 31
Phase Inductance, 311
Phase Resistance, 311
pitch, 182
Pole Pairs, 311
polling, 266
position event, 144
Post-synchronization Time, 309
power failure functionality, 31
Process, 115
process support functionality, 33
program pointer, 46
proportional signal, 34

Q
queue handling, 157
queue name, 157

R
r1_calib, 178
Ramp time, 310
Ramp Time, 116
Ramp to real contact, 310
Ramp when Increase Force, 310
RAPID components

Advanced RAPID, 46
Multitasking, 263

RAPID Message Queue, 155
RAPID support functionality, 45
rawbytes, 137
RawBytesLen, 137
raw data, 136
ReadAnyBin, 133
ReadBin, 133
ReadCfgData, 28
ReadDir, 141
ReadErrData, 38
ReadNum, 133
ReadRawBytes, 137
ReadStr, 133
ReadStrBin, 133
reconnect a servo tool, 314
record, 156
recorded path, 255
recover path, 251
References Bandwidth, 310

Application manual - Controller software OmniCore 321
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Index

relay, 299
RemoveAllCyclicBool, 108
RemoveCyclicBool, 108
RemoveDir, 141
RemoveFile, 141
RenameFile, 141
replacements, 179
reset, 248
reset axis, 245
reset follower axis, 122
resolver offset calibration, 185
restartdata, 34
RestoPath, 252
resultant signal, 150–151
resume signals, 35
Rev. Counter not updated, 316
reversed movement, 228
Rewind, 133
RMQEmptyQueue, 161
RMQFindSlot, 161
RMQGetMessage, 161
RMQGetMsgData, 161
RMQGetMsgHeader, 161
RMQGetSlotName, 161
rmqheader, 161
RMQ Max Message Size, 160
RMQ Max No Of Messages, 160
rmqmessage, 161
RMQ Mode, 160
RMQReadWait, 161
RMQSendMessage, 161
RMQSendWait, 161
rmqslot, 161
RMQ Type, 160
robot alignment, 191
roll, 182
Rotating Move, 312
routine call, 270

S
SafeMove Assistant, 242
SEMISTATIC, 261
sensor, 288
service, 314
service routines

Electronically Linked Motors, 118
Servo Tool Change, 295
SetAllDataVal, 22
SetDataSearch, 22
SetDataVal, 22
SetSysData, 46
set up Collision Detection, 235
SetupCyclicBool, 108
SG Process, 309
shapedata, 221
shared resources, 272
signal, 266, 270
SocketAccept, 169
SocketBind, 169
SocketClose, 169
SocketConnect, 169
SocketCreate, 169
socketdev, 169
SocketGetStatus, 170
SocketListen, 169
Socket Messaging, 166
SocketReceive, 169

SocketSend, 169
socketstatus, 169
soft servo, 227
Soft Stop Timeout, 309
software licenses, 14
speed, 229
speed_ratio, 127
Speed Absolute Max, 312
Speed Limit 1 - 6, 310
Speed Max Uncalibrated, 313
Squeeze Position 1 -10, 309
Stall Torque, 311
STATIC, 261
stationary world zone, 221
STCalcForce, 308
STCalcTorque, 308
STCalib, 308
STClose, 308
StepBwdPath, 34
STIsCalib, 308
STIsClosed, 308
STIsIndGun, 308
STIsOpen, 308
STIsServoTool, 308
STOpen, 308
StorePath, 252
Stress Duty Cycle, 312
string termination, 168
StrToByte, 19
STTune, 308
STTuneReset, 308
supervision level, 231, 233, 237
Supervision Type, 312
synchronizing tasks, 268
synchronous movements, 304
syncident, 268
syncident, data type, 263
SyncMoveResume, 252
SyncMoveSuspend, 252
SysFail, 261
SysHalt, 261
SysStop, 261
system parameters

configuration functionality, 27
Multitasking, 261

system resources, 272

T
Task, Task type, 261
Task, type, 261
taskid, 263, 274
taskid, data type, 263
Task in foreground, Task type, 261
TaskRunMec, 273
TaskRunMec, function, 263
TaskRunRob, 273
TaskRunRob, function, 263
tasks, 259, 268

data type, 263
tasks, data type, 263
temporary world zone, 221
TestAndSet, 272
TestAndSet, function, 263
TextGet, 41
TextTabFreeToUse, 41
TextTabGet, 41
TextTabInstall, 41

322 Application manual - Controller software OmniCore
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Index

text table file, 40
Ti Integration Time Speed Loop, 312–313
tip change calibration, 305
Tip Force 1 - 10, 309
tip wear calibration, 305
tool calibration, 193
tool change calibration, 305
tools, 177
torque, 229
torque 1 - torque 6, 310
Torque Absolute Max, 312
torque follower, 123
track motion, 227
Transmission, 312
Transmission Gear High, 247
Transmission Gear Low, 247
Transmission Gear Ratio, 312
trapdata, 38
trap routine, 157
TriggC, 146
TriggCheckIO, 146
triggdata, 145
TriggEquip, 145
triggering, 238
TriggInt, 145
TriggIO, 145
triggios, 145
triggiosdnum, 145
TriggJ, 146
TriggL, 146
TriggLIOs, 146
TriggRampAO, 146
TriggSpeed, 34
TriggStopProc, 34
triggstrgo, 145
TrustLevel, Task type, 261
TUNE_FRIC_LEV, 198
TUNE_FRIC_RAMP, 198
TuneServo, 198
tuning, 237
tuning, automatic, 196
tuning, manual, 198
Type, Task type, 261

U
uncalib, 178
Uncalibrated Control Master 0, 313

UnpackRawBytes, 137
unsynchronize, 120
Update revolution counter, 316
Upper Joint Bound, 311
Use Connection Relay, 299
Use Linked Motor Process, 115
Use Process, 115
Use ramp time, 310
user message functionality, 40
Use Robot Calibration, 178

V
verification, 186

W
waiting for tasks, 268
WaitSyncTask, 268
WaitSyncTask, instruction, 263
WaitUntil, 266
WarmStart, 28
world zones, 219
Wrist Move, 211
wrist replacement, 179
Write, 133
WriteAnyBin, 133
WriteBin, 133
WriteCfgData, 28
WriteRawBytes, 137
WriteStrBin, 133
WZBoxDef, 221
WZCylDef, 221
WZDisable, 222
WZDOSet, 222
WZEnable, 222
WZFree, 222
WZHomeJointDef, 222
WZLimJointDef, 222
WZLimSup, 222
WZSphDef, 221
wzstationary, 221
wztemporary, 221

Y
yaw, 182

Z
zones, 219

Application manual - Controller software OmniCore 323
3HAC066554-001 Revision: N

© Copyright 2019-2024 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
66
55
4-
0
0
1,
R
ev

N
,e
n

© Copyright 2019-2024 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	Open source and 3rd party components
	1 Introduction to RobotWare
	Software products
	Product classes
	Option groups

	2 RobotWare-OS
	2.1 Advanced RAPID
	2.1.1 Introduction to Advanced RAPID
	Introduction to Advanced RAPID

	2.1.2 Bit functionality
	2.1.2.1 Overview
	Purpose
	What is included

	2.1.2.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.2.3 Bit functionality example
	Program code

	2.1.3 Data search functionality
	2.1.3.1 Overview
	Purpose
	What is included

	2.1.3.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.3.3 Data search functionality examples
	Set unknown variable
	Reset a range of variables
	List/set certain variables

	2.1.4 Alias I/O signals
	2.1.4.1 Overview
	Purpose
	What is included

	2.1.4.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.4.3 Alias I/O functionality example
	Assign alias name to signal

	2.1.5 Configuration functionality
	2.1.5.1 Overview
	Purpose
	What is included

	2.1.5.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.5.3 Configuration functionality example
	Configure system parameters

	2.1.6 Power failure functionality
	2.1.6.1 Overview
	Purpose
	What is included

	2.1.6.2 RAPID components and system parameters
	Data types
	Instructions
	Functions
	System parameters

	2.1.6.3 Power failure functionality example
	Test for interrupted path

	2.1.7 Process support functionality
	2.1.7.1 Overview
	Purpose
	What is included
	Limitations

	2.1.7.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.7.3 Process support functionality examples
	Signal proportional to speed
	Resume signals after stop
	Move TCP backwards

	2.1.8 Interrupt functionality
	2.1.8.1 Overview
	Purpose
	What is included

	2.1.8.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.8.3 Interrupt functionality examples
	Interrupt when persistent variable changes
	Error interrupt

	2.1.9 User message functionality
	2.1.9.1 Overview
	Purpose
	What is included

	2.1.9.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.9.3 User message functionality examples
	Book error number
	Error message from text table file

	2.1.9.4 Text table files
	Overview
	Explanation of the text table file
	Example of text table file

	2.1.10 RAPID support functionality
	2.1.10.1 Overview
	Purpose
	What is included

	2.1.10.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.10.3 RAPID support functionality examples
	Activate tool
	Get argument name
	Test if program pointer has been moved

	2.2 Analog Signal Interrupt
	2.2.1 Introduction to Analog Signal Interrupt
	Purpose
	What is included
	Basic approach
	Limitations

	2.2.2 RAPID components
	Data types
	Instructions
	Functions

	2.2.3 Code example
	Temperature surveillance

	2.3 Connected Services
	2.3.1 Overview
	Description
	Purpose
	What is included
	Prerequisites
	Basic workflow
	Limitations
	Power On Connect
	Production Registration

	2.3.2 Connected Services connectivity
	Connected Services connection concept

	2.3.3 Connected Services registration
	Connected Services startup
	Connected Services preparation
	Connected Services configuration
	Connected Services connectivity
	Connected Services registration
	Connected Services connected and registered

	2.3.4 Summary of Connected Services paths in FlexPendant
	Configuration
	Status
	Logs

	2.3.5 Summary of Connected Services paths in RobotStudio
	Configuration
	Status
	Logs

	2.3.6 Configuration - system parameters
	Introduction
	Connected Services connection
	WAN configuration (Public connectivity)
	DNS configuration (Public connectivity)

	2.3.7 Configuring Connected Services using FlexPendant
	2.3.7.1 Introduction
	Overview

	2.3.7.2 Enable or disable Connected Services using FlexPendant
	Enabling or disabling Connected Services

	2.3.7.3 Configure Connected Services based on connection type using FlexPendant
	Overview
	Configuring the connection type ABB Connect
	Configuring the connection type Public
	Configuring the connection type Custom

	2.3.7.4 Configuration of public network using FlexPendant
	Configuring IP and DNS Statically
	Configuring IP and DNS Automatically

	2.3.7.5 Configure internet connection with proxy using FlexPendant
	Procedure

	2.3.8 Configuring Connected Services using RobotStudio
	2.3.8.1 Introduction
	Overview

	2.3.8.2 Enable or disable connected services using RobotStudio
	Enabling or disabling connected services

	2.3.8.3 Configure connected services based on connection type using RobotStudio
	Overview
	Configuring the connection type ABB Connect
	Configuring the connection type Public
	Configuring the connection type Custom

	2.3.8.4 Configuration of public network using RobotStudio
	Configuring IP Statically
	Configuring DNS Statically
	Configuring IP Automatic (DHCP)

	2.3.8.5 Configure internet connection with proxy using RobotStudio
	Procedure

	2.3.9 Connected Services information
	Connected Services pages
	Introduction
	Overview page
	Connectivity page
	Registration page
	Advanced page
	Data collectors page

	Description of values in Connected Services information
	CSE status
	CSE connection status
	CSE registration status
	CSE mode
	Data collection status

	Description of behavior of events for server polling
	Connected Services event logs
	Force a reset of the software agent

	2.3.10 Troubleshooting
	2.3.10.1 Server connectivity troubleshooting
	Overview
	Connected Services Gateway
	Cybersecurity
	Time accuracy

	2.3.10.2 3G / Wi-Fi Connectivity troubleshooting
	Overview
	Procedure

	2.3.10.3 4G Connectivity troubleshooting
	Overview

	2.3.10.4 How to get Connected Services Embedded logs from the controller
	Procedure

	2.3.10.5 Connected Services Embedded troubleshooting logs
	Connected Services Embedded troubleshooting logs and description
	Connected Services Embedded base logs

	2.3.11 Network topology scenarios
	Connection Type – Connected Services with 4G module
	Connection Type – Connected Services with 3G module
	Connection Type – Connected Services with Wi-Fi module
	Connection Type – Connected Services with Wired module
	Connection Type – Public
	Connection Type – Public - With customer storage enabled
	Connected Services using ABB Gateway Service box
	Overview
	Controller with DHCP
	Gateway box on customer network

	Connected Services using customer Gateway
	Overview
	Controller with DHCP
	Gateway box on customer network

	2.4 Cyclic bool
	2.4.1 Cyclically evaluated logical conditions
	Purpose
	What is included
	Basic approach
	Restart and reset behavior
	Configuration
	Syntax
	SetupCyclicBool Flag Cond [\Signal]
	RemoveCyclicBool Flag

	Limitations

	2.4.2 Cyclic bool examples
	Using digital input and output signals
	Using bool variables
	Using num and dnum variables
	Using alias variables
	Using user defined constants for comparison
	Handing over arguments by reference

	2.4.3 System parameters
	About the system parameters
	Type Cyclic bool settings

	2.4.4 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	2.5 Device Command Interface
	2.5.1 Introduction to Device Command Interface
	Purpose
	What is included
	Basic approach
	Limitations

	2.5.2 RAPID components and system parameters
	Data types
	Instructions
	Functions
	System parameters

	2.5.3 Code example
	Write rawbytes to DeviceNet

	2.6 Electronically Linked Motors
	2.6.1 Overview
	Description
	Purpose
	What is included
	Basic approach
	Limitations

	2.6.2 Configuration
	2.6.2.1 System parameters
	About the system parameters
	Joint
	Process
	Linked M Process

	2.6.2.2 Configuration example
	About this example
	Joint
	Process
	Linked M Process

	2.6.3 Managing a follower axis
	2.6.3.1 Using the service routine for a follower axis
	About the service routine
	Copy service routine file to HOME
	Load cfg files
	Data variables
	Start service routine
	Menu buttons

	2.6.3.2 Calibrate follower axis position
	Overview
	Unsynchronize
	Jog follower axis
	Fine calibrate

	2.6.3.3 Reset follower axis
	Overview
	Reset follower automatically
	Reset follower by manual jogging

	2.6.4 Tuning a torque follower
	2.6.4.1 Description of torque follower
	About torque follower
	Master axis
	Follower axis
	Description

	Torque quota
	Example of torque follower configuration

	2.6.4.2 Using the service routine to tune a torque follower
	About the service routine for torque follower
	Opening the tune torque follower menu
	Tuning the torque quota
	Tuning the temporary position delta

	2.6.5 Data setup
	2.6.5.1 Set up data for the service routine
	Overview
	Data descriptions
	Edit data variables

	2.6.5.2 Example of data setup
	About this example
	l_f_axis_name
	l_f_mecunt_n
	l_f_axis_no
	l_m_mecunt_n
	l_m_axis_no
	offset_ratio
	speed_ratio
	displacement

	2.7 File and I/O device handling
	2.7.1 Introduction to file and I/O device handling
	About file and I/O device handling

	2.7.2 Binary and character based communication
	2.7.2.1 Overview
	Purpose
	What is included
	Basic approach
	Limitations

	2.7.2.2 RAPID components
	Data types
	Instructions
	Functions

	2.7.2.3 Code examples
	Communication with character based file
	Communication with binary file

	2.7.3 Raw data communication
	2.7.3.1 Overview
	Purpose
	What is included
	Basic approach
	Limitations

	2.7.3.2 RAPID components
	Data types
	Instructions
	Functions

	2.7.3.3 Code examples
	About the examples
	Write and read rawbytes
	Copy rawbytes

	2.7.4 File and directory management
	2.7.4.1 Overview
	Purpose
	What is included
	Basic approach

	2.7.4.2 RAPID components
	Data types
	Instructions
	Functions

	2.7.4.3 Code examples
	List files
	Move file to new directory
	Check sizes

	2.8 Fixed Position Events
	2.8.1 Overview
	Purpose
	What is included
	Basic approach

	2.8.2 RAPID components and system parameters
	Data types
	Instructions
	Functions
	System parameters

	2.8.3 Code examples
	Example without Fixed Position Events
	Result
	Example with TriggIO and TriggL instructions
	Result
	Example with MoveLSync instruction
	Result

	2.9 Logical Cross Connections
	2.9.1 Introduction to Logical Cross Connections
	Purpose
	Description
	What is included

	2.9.2 Configuring Logical Cross Connections
	System parameters

	2.9.3 Examples
	Logical AND
	Logical OR
	Inverted signals
	Several resultants
	Complex conditions

	2.9.4 Limitations
	Evaluation order
	Maximum number of actor I/O signals
	Maximum number of cross connections
	Maximum depth
	Do not create a loop
	Do not have the same resultant more than once
	Overlapping device maps

	2.10 RAPID Message Queue
	2.10.1 Introduction to RAPID Message Queue
	Purpose
	What is included
	Basic approach

	2.10.2 RAPID Message Queue behavior
	Illustration of communication
	Creating a PC SDK client
	What can be sent in a message
	Queue name
	Queue handling
	Queue modes
	Interrupt mode
	Synchronous mode

	Message content
	RAPID task not executing
	Message size limitations
	Message lost
	Queue lost
	Related information

	2.10.3 System parameters
	About the system parameters
	Type Task

	2.10.4 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	2.10.5 Code examples
	Example with RMQSendMessage and RMQGetMessage
	Sender
	PC SDK client

	Example with RMQSendWait
	Example with RMQReceiveSend

	2.11 Socket Messaging
	2.11.1 Introduction to Socket Messaging
	Purpose
	What is included
	Basic approach

	2.11.2 Schematic picture of socket communication
	Illustration of socket communication

	2.11.3 Technical facts about Socket Messaging
	Overview
	No string termination
	Unintended merge of messages
	Non printable characters

	2.11.4 RAPID components
	Data types
	Instructions for client
	Instructions for server
	Functions

	2.11.5 Code examples for Socket Messaging
	Example of client/server communication
	Example of error handler

	2.12 User logs
	2.12.1 Introduction to User logs
	Description
	Purpose
	What is included

	3 Motion Performance
	3.1 Absolute Accuracy [3101-x]
	3.1.1 About Absolute Accuracy
	Purpose
	What is included
	When is Absolute Accuracy being used
	Absolute Accuracy active
	Absolute Accuracy not active

	RAPID instructions

	3.1.2 Useful tools
	Overview
	Load Identification
	CalibWare

	3.1.3 Configuration
	Activate Absolute Accuracy
	Deactivate Absolute Accuracy
	Change calibration data

	3.1.4 Maintenance
	3.1.4.1 Maintenance that affect the accuracy
	Overview
	Tool recalibration
	Motor replacement
	Wrist replacement
	Arm replacement or disassembly
	Manipulator replacement

	3.1.4.2 Loss of accuracy
	Cause and action

	3.1.5 Compensation theory
	3.1.5.1 Error sources
	Types of errors
	Illustration

	3.1.5.2 Absolute Accuracy compensation
	Introduction
	Desired position
	Position due to deflection
	Fake target
	Compensated position

	3.1.6 Preparation of Absolute Accuracy robot
	3.1.6.1 ABB calibration process
	Overview
	Resolver offset calibration
	Absolute Accuracy calibration
	Absolute Accuracy verification
	Compensation parameters and birth certificate

	3.1.6.2 Birth certificate
	About the birth certificate

	3.1.6.3 Compensation parameters
	About the compensation parameters
	The compensation parameters

	3.1.7 Cell alignment
	3.1.7.1 Overview
	About cell alignment
	Alignment procedure
	Illustration

	3.1.7.2 Measure fixture alignment
	About fixture alignment
	Fixture measurement procedure
	Illustration

	3.1.7.3 Measure robot alignment
	Select method
	Alignment to physical base
	Alignment to theoretical base

	3.1.7.4 Frame relationships
	About frame relationships
	Determine robot base

	3.1.7.5 Tool calibration
	About tool calibration
	Tool calibration procedures

	3.2 Advanced Robot Motion 3100-1
	About Advanced Robot Motion

	3.3 Advanced Shape Tuning [included in 3100-1]
	3.3.1 About Advanced Shape Tuning
	Purpose
	What is included
	Basic approach

	3.3.2 Automatic friction tuning
	About automatic friction tuning
	Program execution
	Limitations
	Example

	3.3.3 Manual friction tuning
	Overview
	Tune types
	Configure friction level

	3.3.4 System parameters
	3.3.4.1 System parameters
	About the system parameters
	Friction Compensation / Control Parameters
	Illustration

	3.3.4.2 Setting tuning system parameters
	Automatic tuning rarely requires changes in system parameters
	Transfer tuning to system parameters
	Starting with an estimated value

	3.3.5 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	3.4 Motion Process Mode [included in 3100-1]
	3.4.1 About Motion Process Mode
	Purpose
	Available motion process modes
	Selection of mode
	Limitations

	3.4.2 User-defined modes
	Available tune parameters
	Tuning parameters from RAPID
	Example 1
	Example 2

	Predefined parameter values

	3.4.3 General information about robot tuning
	Minimizing cycle time
	Increasing path accuracy and reducing vibrations
	Compensating for foundation flexibility

	If accuracy still needs to be improved

	3.4.4 Additional information
	Motion Process Mode compared to TuneServo and AccSet
	Limitations
	Related information

	3.5 Wrist Move [included in 3100-1]
	3.5.1 Introduction to Wrist Move
	Purpose
	Using Wrist Move
	Limitations

	3.5.2 Cut plane frame
	Defining the cut plane frame
	Illustration, cut plane
	Prerequisites

	3.5.3 RAPID components
	Instruction

	3.5.4 RAPID code, examples
	Basic example
	Advanced example
	Illustration, pSlot and wSlot

	3.5.5 Troubleshooting
	Unexpected cut shape
	Mismatching radius
	Impossible movement with chosen axis pair

	4 Motion Supervision
	4.1 World Zones [3106-1]
	4.1.1 Overview of World Zones
	Purpose
	What is included
	Basic approach
	Limitations

	4.1.2 RAPID components
	Data types
	Instructions
	Functions

	4.1.3 Code examples
	Create protected box
	Signal when robot is in position

	4.2 Collision Detection [3107-1]
	4.2.1 Overview
	Purpose
	Description
	What is included
	Basic approach
	Collision detection for YuMi robots

	4.2.2 Limitations
	Load definition
	Robot axes only
	Independent joint
	Soft servo
	No change until the robot moves
	Reversed movement distance
	Delay before reversed movement
	Robot on track motion

	4.2.3 What happens at a collision
	Overview
	Collision illustration
	Robot behavior after a collision
	Speed and torque diagram

	4.2.4 Additional information
	Motion error handling

	4.2.5 Configuration and programming facilities
	4.2.5.1 System parameters
	About system parameters
	Motion Supervision
	Motion Planner
	Motion System
	General RAPID

	4.2.5.2 RAPID components
	Instructions

	4.2.5.3 Signals
	Digital outputs

	4.2.6 How to use Collision Detection
	4.2.6.1 Set up system parameters
	Activate supervision
	Define supervision levels

	4.2.6.2 Adjust supervision from FlexPendant
	Speed adjusted supervision level
	Set jog supervision on FlexPendant

	4.2.6.3 Adjust supervision from RAPID program
	Default values
	Temporarily deactivate supervision
	Reactivate supervision
	Tuning

	4.2.6.4 How to avoid false triggering
	About false triggering
	Actions to take

	4.3 Collision Avoidance [3150-1]
	Introduction
	False collision warning
	Activation/deactivation of objects
	Trigger signals
	Limitations
	Disabling Collision Avoidance

	4.4 SafeMove Assistant
	Purpose
	Description
	System parameters

	5 Motor Control
	5.1 Independent Axis [3111-1]
	5.1.1 Overview
	Purpose
	What is included
	Basic approach
	Reset axis
	Limitations

	5.1.2 System parameters
	About the system parameters
	Arm
	Transmission

	5.1.3 RAPID components
	Data types
	Instructions
	Functions

	5.1.4 Code examples
	Save cycle time
	Polish by rotating axis 6
	Reset an axis

	6 RAPID Program Features
	6.1 Path Recovery [3113-1]
	6.1.1 Overview
	Purpose
	What is included
	Limitations

	6.1.2 RAPID components
	Data types
	Instructions
	Functions

	6.1.3 Store current path
	Why store the path?
	Basic approach
	Example

	6.1.4 Path recorder
	What is the path recorder
	How to use the path recorder
	Lift the tool
	Simple example
	Complex example
	Resume path recorder

	6.2 Multitasking [3114-1]
	6.2.1 Introduction to Multitasking
	Purpose
	Basic description
	What is included
	Basic approach

	6.2.2 System parameters
	About the system parameters
	Task

	6.2.3 RAPID components
	Data types
	Instructions
	Functions

	6.2.4 Communication between tasks
	6.2.4.1 Persistent variables
	About persistent variables
	Example with persistent variable
	Module for common data

	6.2.4.2 Waiting for other tasks
	Two techniques
	Polling
	Polling example
	Interrupt
	Interrupt example

	6.2.4.3 Synchronizing between tasks
	Synchronizing using WaitSyncTask
	WaitSyncTask example

	6.2.4.4 Using a dispatcher
	What is a dispatcher?
	Dispatcher example

	6.2.5 Other programming issues
	6.2.5.1 Share resource between tasks
	Flag indicating occupied resource
	Example with flag and TestAndSet

	6.2.5.2 Test if task controls mechanical unit
	Two functions for inquiring
	Example with TaskRunMec and TaskRunRob

	6.2.5.3 taskid
	taskid syntax
	Code example

	6.2.5.4 Avoid heavy loops
	Background tasks loop continuously
	Example

	7 Communication
	7.1 FTP&SFTP client [3116-1]
	7.1.1 Introduction to FTP&SFTP client
	Purpose
	Network illustration
	Description
	What is included
	Basic approach
	Requirements
	Directory listing style on FTP server

	Limitations
	Example FTP
	Example SFTP

	System parameters

	7.2 NFS Client [3117-1]
	7.2.1 Introduction to NFS Client
	Purpose
	Description
	What is included
	Basic approach
	Prerequisites
	Limitations
	Example

	8 User Interaction Application
	8.1 RobotStudio Connect [3119-1]
	Overview

	8.2 FlexPendant Base Apps
	Limited App Package [3120-1]
	Essential App Package [3120-2]

	8.3 FlexPendant Independent Apps
	Program Package [3151-1]

	9 Engineering tools
	9.1 RobotWare Add-In
	

	9.2 Path Corrections [3123-1]
	9.2.1 Overview
	Purpose
	What is included
	Basic approach
	Limitations

	9.2.2 RAPID components
	Data types
	Instructions
	Functions

	9.2.3 Related RAPID functionality
	The argument \Corr
	Interrupts

	9.2.4 Code example
	Linear movement with correction
	Program code

	9.3 Auto Acknowledge Input
	Description
	Limitations
	Activate Auto Acknowledge Input

	10 Tool control options
	10.1 Servo Tool Change [3110-1]
	10.1.1 Overview
	Purpose
	What is included
	Basic approach

	10.1.2 Requirements and limitations
	Additional axes
	Tool changer
	Up to 8 tools
	Moving deactivated tool
	Activating wrong tool

	10.1.3 Configuration
	Configuration overview
	How to configure each tool

	10.1.4 Connection relay
	Overview
	System parameters
	Example of connection relay configuration

	10.1.5 Tool change procedure
	How to change tool

	10.1.6 Jogging servo tools with activation disabled
	Overview
	What to do when Activation disabled appears

	10.2 Tool Control [3109-1]
	10.2.1 Overview
	Purpose
	What is included
	Basic approach
	Prerequisites

	10.2.2 Servo tool movements
	Closing and opening of a servo tool
	Synchronous and asynchronous movements

	10.2.3 Tip management
	About tip management
	Tip wear calibration
	Tip change calibration
	Tool change calibration

	10.2.4 Supervision
	Max and min stroke
	Motion supervision
	Maximum torque
	Speed limit

	10.2.5 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	10.2.6 System parameters
	About the system parameters
	SG Process
	Force Master
	Force Master Control
	Arm
	Acceleration Data
	Motor Type
	Motor Calibration
	Stress Duty Cycle
	Supervision Type
	Transmission
	Lag Control Master 0
	Uncalibrated Control Master 0

	10.2.7 Commissioning and service
	Commissioning the servo tool
	Template file locations

	Disconnect/reconnect a servo tool
	Recover from accidental disconnection

	10.2.8 Mechanical unit calibrations
	Fine calibration
	Update revolution counter

	10.2.9 RAPID code example
	How to use the code package
	Using shell routines

	Index

