
ROBOTICS

Application manual
RobotWare Add-Ins

Trace back information:
Workspace Main version a515
Checked in 2023-06-05
Skribenta version 5.5.019

Application manual
RobotWare Add-Ins

RobotWare 6.15.03

Document ID: 3HAC051193-001
Revision: L

© Copyright 2015-2023 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2015-2023 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...
9Product documentation ..

11Safety ..

131 Introduction
131.1 About RobotWare Add-Ins ..
151.2 The CIRCLEMOVE example ..

172 RobotWare Add-In functionality
172.1 Required files and file structure ...
192.2 version.xml ..
212.3 The install.cmd file ..
212.3.1 Introduction ..
222.3.2 Commands ..
322.3.3 Examples of install.cmd files ...
332.4 RAPID modules ..
352.5 Custom event log messages ...
352.5.1 About event log messages ..
362.5.2 Event log texts ..
382.5.3 Event log titles ..
392.5.4 Validating event log .xml files ..
402.6 System parameters related to add-in development ..
402.6.1 About cfg files ..
432.6.2 Topic Controller ..
472.6.3 Topic I/O System ...
482.6.4 Topic Man-machine Communication ...
582.6.5 Example cfg files ...
602.7 Using text resources from files ..
622.8 Hiding RAPID content ..
642.9 Optional settings for RAPID arguments (RAPID meta data)
652.9.1 Hiding arguments in programs ...
672.9.2 Hiding optional argument when changing selected instruction
692.9.3 Argument filter ..
712.9.4 Argument value range ..
722.10 FlexPendant applications ..

733 RobotWare Add-In Packaging tool
733.1 Introduction ..
733.1.1 About the RobotWare Add-In Packaging tool ..
753.1.2 Optional features ...
773.1.3 Files of a packaged add-in ..
783.1.4 Signing with digital certificates ...
823.1.5 Types of add-in packaging tools ...
833.2 User interface ...
833.2.1 The home page ...
843.2.2 The File menu ..
863.2.3 The Product Manifest view ..
973.3 Creating and building an add-in project ...
983.4 Converting an additional option to an add-in ...
993.5 Building an add-in from the console ..

1014 License Generator
1014.1 Introduction ..
1024.2 The user interface ...
1024.2.1 The Preferences window ..

Application manual - RobotWare Add-Ins 5
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Table of contents

1034.2.2 The main window ..
1054.3 Creating the license ...

107Index

6 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This manual contains instructions for how to create your own Add-In to use with
ABB’s robot systems.

Usage
With the help of this manual, you can package functionality into an Add-In and
create a license that allows access to the Add-In.

Who should read this manual?
This manual is intended for:

• line builders that want to implement the same program solution on many
robots

• ABB’s partners, selling the robot systems with their own functionality added
• ABB companies selling robot systems

Prerequisites
The reader should...

• be experienced in working with ABB robots
• be experienced RAPID programmer
• be familiar with system parameters

References

Document IDReference

3HAC050948-001Technical reference manual - System parameters

3HAC032104-001Operating manual - RobotStudio

Revisions

DescriptionRevision

Released with RobotWare 6.00.01-
First release.

Released with RobotWare 6.02
• Added section about I/O signals, see Topic I/O System on page 47.
• Updated the path to the utility folders throughout the manual, for example

see Template files on page 35.
• Added section Hiding RAPID content on page 62.
• Added section Optional settings for RAPID arguments (RAPID meta

data) on page 64 and updated section register on page 28.
• Updated the section RobotWare Add-In Packaging tool on page 73.
• Minor corrections.

A

Continues on next page
Application manual - RobotWare Add-Ins 7
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Overview of this manual

DescriptionRevision

Released with RobotWare 6.03
• Added the tag VersionName to the version.xml file, see version.xml on

page 19.
• Updated the section register on page 28.
• Added sections Argument filter on page 69 and Argument value range

on page 71.
• Updated the section Product Details tab on page 86.
• Minor corrections.

B

Released with RobotWare 6.04
• Added commands for deleting items in the FlexPendant programming

window picklist, see The install.cmd file on page 21.
• Added command direxist, see Commands on page 22.
• Minor corrections.

C

Released with RobotWare 6.07
• Added the section Building an add-in from the console on page 99.

D

Released with RobotWare 6.08
• Updated the section User interface on page 83.
• Updated the RAPID code example in the section RAPID modules on

page 33.

E

Released with RobotWare 6.10.
• Updated with information for Unicode support, see Unicode characters

in UI and TP instructions in RAPID on page 60.

F

Released with RobotWare 6.11.
• Added more information about arguments in the Unicode support, see

Unicode characters in UI and TP instructions in RAPID on page 60.

G

Released with RobotWare 6.12.
• Updated the section RobotWare Add-In Packaging tool on page 73.
• New script math_lib_set_mem_size added in section Commands on

page 22.

H

Released with RobotWare 6.13.
• Section Argument Name Rules (MMC_REAL_PARAM) on page 50 up-

dated with information about how to add a string in Rapid rules.

J

Released with RobotWare 6.14.01.
• Updated the section Building an add-in from the console on page 99.
• Updated the section Commands on page 22.

K

Released with RobotWare 6.15.03.
• Updated the section config on page 22.

L

8 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Overview of this manual
Continued

Product documentation
Categories for user documentation from ABB Robotics

The user documentation from ABB Robotics is divided into a number of categories.
This listing is based on the type of information in the documents, regardless of
whether the products are standard or optional.

Tip

All documents can be found via myABB Business Portal, www.abb.com/myABB.

Product manuals
Manipulators, controllers, DressPack/SpotPack, and most other hardware is
delivered with a Product manual that generally contains:

• Safety information.
• Installation and commissioning (descriptions of mechanical installation or

electrical connections).
• Maintenance (descriptions of all required preventive maintenance procedures

including intervals and expected life time of parts).
• Repair (descriptions of all recommended repair procedures including spare

parts).
• Calibration.
• Troubleshooting.
• Decommissioning.
• Reference information (safety standards, unit conversions, screw joints, lists

of tools).
• Spare parts list with corresponding figures (or references to separate spare

parts lists).
• References to circuit diagrams.

Technical reference manuals
The technical reference manuals describe reference information for robotics
products, for example lubrication, the RAPID language, and system parameters.

Application manuals
Specific applications (for example software or hardware options) are described in
Application manuals. An application manual can describe one or several
applications.
An application manual generally contains information about:

• The purpose of the application (what it does and when it is useful).
• What is included (for example cables, I/O boards, RAPID instructions, system

parameters, software).
• How to install included or required hardware.
• How to use the application.

Continues on next page
Application manual - RobotWare Add-Ins 9
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Product documentation

http://www.abb.com/myABB

• Examples of how to use the application.

Operating manuals
The operating manuals describe hands-on handling of the products. The manuals
are aimed at those having first-hand operational contact with the product, that is
production cell operators, programmers, and troubleshooters.

10 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Product documentation
Continued

Safety
Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long
stop in movement can be followed by a fast hazardous movement. Even if a pattern
of movement is predicted, a change in operation can be triggered by an external
signal resulting in an unexpected movement.
Therefore, it is important that all safety regulations are followed when entering
safeguarded space.

WARNING

Program changes should always be validated and tested before entering
production, to protect humans and property. Ensure it is possible to stop the
robot with a protective stop device.

Safety regulations
Before beginning work with the robot, make sure you are familiar with the safety
regulations described in the manual Safety manual for robot - Manipulator and
IRC5 or OmniCore controller.

Application manual - RobotWare Add-Ins 11
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Safety

This page is intentionally left blank

1 Introduction
1.1 About RobotWare Add-Ins

What is an Add-In
In RobotWare 6 the concept of additional options has been replaced with RobotWare
Add-Ins. If you were familiar with the additional option concept, you will see that
from a structural point of view, additional options and Add-Ins are handled the
same way on the robot controller. What is new is that the packaging has been
changed to simplify installation with Installation Manager. For more information
about the packaging tool and process, see RobotWare Add-In Packaging tool on
page 73.

Using Add-Ins
Add-Ins allow to create installable supplemental software packages that extend
the capabilities offered by RobotWare, making ABB's robot controllers even smarter
and even more user-friendly. Creating RobotWare Add-Ins is also the recommended
way for 3rd party developers to add new features into RobotWare.
An Add-In can include a number of RAPID modules, system modules, or program
modules which hold the basic code for the Add-In. The Add-In also includes some
files for loading and configuration at start up. The Add-In may also include .xml
files with event log messages in different languages.
An Add-In can also consist of more advanced coding, such as C# code, for
FlexPendant applications. This manual will cover the first case, with coding done
in RAPID only. For more advanced coding, use RobotStudio SDK applications.

Unlicensed, open, Add-Ins
What you need from ABB to package your own open Add-In is:

• RobotWare Add-In Packaging tool

Licensed Add-Ins
What you need from ABB to package your own licensed Add-In is:

• RobotWare Add-In Packaging tool
• a licence certificate for the RobotWare Add-In Packaging tool for your Add-In

name
To license the Add-In, you will also need:

• License Generator
• a publisher certificate.
• a licensing certificate for the License Generator

For more information, see Digital signing on page 78.

Continues on next page
Application manual - RobotWare Add-Ins 13
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

1 Introduction
1.1 About RobotWare Add-Ins

Basic approach
These are the major steps for creating an Add-In. More detailed descriptions are
given later in this manual.

1 Create the RAPID code for the Add-In, see RAPID modules on page 33.
2 Create the event message files, seeCustom event logmessages on page35.
3 Create configuration files for system parameters, see System parameters

related to add-in development on page 40.
4 Create the file version.xml, see version.xml on page 19.
5 Create the file install.cmd, see The install.cmd file on page 21.
6 Create and package the RobotWare Add-In, seeRobotWare Add-In Packaging

tool on page 73.
7 For licensed Add-Ins:

Create a licence file, see License Generator on page 101.
8 Use the Installation Manager in RobotStudio to create a system that uses

the Add-In.
For more information, see Operating manual - RobotStudio.

Selections within Add-Ins
An Add-In can contain selections (that is, optional functionality selectable at
installation). For more information see getkey on page 26 and the Feature Data
section in the Options tab on page 88.

14 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

1 Introduction
1.1 About RobotWare Add-Ins
Continued

1.2 The CIRCLEMOVE example

Introduction
Throughout this manual, an example Add-In is used to illustrate how to implement
an Add-In. This Add-In is called CIRCLEMOVE.
Some parts of this manual have detailed reference information for commands and
syntax used in the Add-In files. Looking at the examples can be a way of solving
your problem without having to read all the reference information.

Description
The Add-In CIRCLEMOVE contains an instruction called MoveCircle that will
move the robot in a complete circle. This instruction is added to a pick list on the
FlexPendant and behaves just like one of the original instructions.
Error messages are stored in .xml files (in this example only in English), and are
used in the RAPID code.

Application manual - RobotWare Add-Ins 15
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

1 Introduction
1.2 The CIRCLEMOVE example

This page is intentionally left blank

2 RobotWare Add-In functionality
2.1 Required files and file structure

Add-In files
An Add-In consists of a number of files that you need to create in order to make
your own Add-In.

DescriptionFile type

Name, version number and description of the Add-In, see version.xml
on page 19.

version.xml

Installation script. Specifies for example which .cfg files to load, see The
install.cmd file on page 21.

install.cmd

One or several .cfg files with the configuration of system parameters. If
the Add-In includes RAPID, one of the .cfg files should specify which
RAPID module (.sys file) to load, see System parameters related to add-
in development on page 40.

.cfg

The RAPID source code, see RAPID modules on page 33..sys or .mod

Event log message files
If the Add-In contains customized event log messages, two XML files for each
language are required. These are placed in a specific folder for each language:

• <Add-In folder>\language\<language code>\<Add-In name>_elogtext.xml
• <Add-In folder>\language\<language code>\<Add-In name>_elogtitles.xml

The language codes consist of two letters, for example en, de, or fr, and are defined
by the standard ISO 639, see Custom event log messages on page 35.

Continues on next page
Application manual - RobotWare Add-Ins 17
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.1 Required files and file structure

File structure
This picture displays the layout the of an Add-In, required by the robot controller,
before it has been packaged with the RobotWare Add-In Packaging tool.
The tps folder is used for FlexPendant applications, see FlexPendant applications
on page 72.

<option name>
version.xml

install.cmd

install.cmd

instlang.cmd

language

en
elogtext.xml

elogtitles.xml
text.xml

text_utf8.xml

. . .

. . .

. . .

config
sys.cfg
mmc.cfg

<. . .>.sys

<. . .>.mod

RAPID

tps

. . .

. . .

xx1400002781

Note

Note thatmmc.cfg, sys.cfg, and the folder language (and everything in that folder)
are optional. How to set up the language folders and their content is described
in Including language files from your add-in on page 60.

18 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.1 Required files and file structure
Continued

2.2 version.xml

Introduction
A RobotWare 6 Add-In contains a version.xml file that holds the name, version,
and description of the Add-In. This is the same as for a RobotWare 5 additional
option.
When converting a RobotWare 5 additional option to a RobotWare 6 Add-In, the
information in the version.xml file is read by the RobotWare Add-In Packaging tool.

Note

In RobotWare 6, the role of the version.xml file has been largely replaced by the
product manifest file. However, some client applications may still require the file
to be present and the RobotWare Add-In Packaging tool will therefore
automatically create a version.xml file based on the product manifest information.

XML description
The file version.xml is using the following tags:

DescriptionTag

Major version number. This number is changed every time a new
Add-In version with major changes is released.

Major

Integer between 0 and 65535.

Minor version number. This number is changed every time a new
Add-In version with minor changes is released.

Minor

Integer between 0 and 65535.

Revision number. This number is changed every time a revision of
the Add-In is released.

Revision

Integer between 0 and 65535.

Build number. To be used internally during developing and testing
of the Add-In.

Build

Integer between 0 and 65535.

The complete product version as displayed to the end user.VersionName
This may include additional identifiers such as "Beta" or "Release
Candidate".

The name of the Add-In.Title

A description of what the Add-In is used for.Description
Max 255 characters.

The release date for this version of the Add-In.Date
Format: YYYY-MM-DD

Always set to AdditionalOption.Type

Example file
<Version>

<Major>1</Major>

<Minor>01</Minor>

<Revision>01</Revision>

<Build>001</Build>

Continues on next page
Application manual - RobotWare Add-Ins 19
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.2 version.xml

<VersionName>1.01.01 Beta 2</VersionName>

<Title>CircleMove</Title>

<Description>CIRCLEMOVE Add-In (gives access to the instruction
MoveCircle)</Description>

<Date>2014-12-31</Date>

<Type>AdditionalOption</Type>

</Version>

20 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.2 version.xml
Continued

2.3 The install.cmd file

2.3.1 Introduction

Description
The install.cmd file is an installation script that for example define which
configuration files and event log messages files to load. One of the configuration
files (sys.cfg) defines which RAPID program files (.sys) to load.

Application manual - RobotWare Add-Ins 21
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.1 Introduction

2.3.2 Commands

Overview
This section describes the syntax of the commands that can be used in the
installation script install.cmd.
The script install.cmd is executed when using the restart mode Reset system to
automatically install a number of different files, like configuration files or text files.
The install.cmd file can contain conditions so that certain actions only are executed
if certain conditions are true.

$
$ defines the name of a string variable.
Example:

setstr -strvar $LANG -value "en"

Predefined strings:

Predefined valueString

The folder where install.cmd is executed. For example:$BOOTPATH
/hd0a/<system name>/PRODUCTS/<Add-In folder>

/hd0a/<system name>/HOME$HOME

/hd0a/<system name>/SYSPAR$SYSPAR

/hd0a/temp$RWTEMP

#
Comment, if # followed by a space.
Label, if no space between # and text.
Example:

A comment

#Label

config
This command can be used for two different purposes:

• Erase unprotected contents of a configuration domain before loading a new
content.

or
• Modify existing contents of a configuration domain.

Continues on next page
22 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands

Erase unprotected contents
The config command can be used to erase unprotected contents of a configuration
domain before loading a new content.

DefaultDescriptionParameter

The topic of the cfg file. Allowed values are:
• SIO - Communication
• SYS - Controller
• EIO - I/O
• MMC - Man-machine communication
• MOC - Motion

domain

FALSEErase unprotected instances of the specified configuration
domain.

erase

Example:
config -erase -domain MOC

Modify existing contents
The config command can be used to modify existing contents of a configuration
domain.
The following operations are possible:

• Add new instances
• Replace existing instances
• Modify existing non-internal instances in the specified configuration domain

DefaultDescriptionParameter

The cfg file name, including file path.filename

TRUEThe types and instances specified in the cfg file will be added
to the cfg database.

load

If an instance with the same name already exists, an error will
be generated and the cfg file will not be loaded. To overwrite
the existing instances, use option -replace.

FALSELoad an internal configuration file.internal
All instances loaded with this option will be write-protected.
Once they have been loaded, they cannot be overwritten.
See Exceptions on page 24.

FALSEReplace all existing non-internal instances with the same name
as those in the loaded cfg file.

replace

See Exceptions on page 24.

FALSEModify all existing non-internal instances with the same name
as those in the loaded cfg file. With this option it is possible to
change one or several parameters of each instance and all
other mandatory parameters are not needed.

modify

FALSEAffects only if used together with the "-replace and -internal"
arguments.

force

Same behavior as for "-replace and -internal" except that exist-
ing internal/write-protected instances also will be replaced.
Replaced instances will be write-protected (internal).
See Exceptions on page 24.

Examples:
config -filename $BOOTPATH/eio.cfg -load

Continues on next page
Application manual - RobotWare Add-Ins 23
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands

Continued

config -filename $BOOTPATH/sys.cfg -internal

config -filename $BOOTPATH/eiopw.cfg -replace

config -filename $BOOTPATH/awNoSimPrompt.cfg -replace -internal

Replace existing instances (also if internal/write-protected) and add new instances,
all replaced/new instances will be write-protected (internal):

config -filename $BOOTPATH/myeio.cfg -replace -internal -force

Note

The cfg files must start with the name of the domain since the config command
uses this information to determine the domain. The first row in the cfg file shall
contain the following information where <version> and <revision> are optional:

<domain name>:CFG_1.0:<version>:<revision>::

Example:
EIO:CFG_1.0:: Domain EIO without version and revision

Exceptions
When loading a configuration file, only one loading parameter maybe specified at
a time (see the examples).
The only exception to that are these two combinations of arguments: "-replace and
-internal" or "-replace and -internal and -force".
The first combination results in a replace of existing non-internal instances and
the replaced instances will also get write-protected (internal). Already existing
internal/write-protected instances will not be replaced, they will be ignored.
The second combination results in a replace of existing non-internal/internal
instances and the replaced instances will also get write-protected (internal).

copy
Copy a file.

DefaultDescriptionParameter

The file to be copied, including the file path.from

The new file name, including the file path.to

Example:
copy -from $BOOTPATH/instopt.cmd -to $RWTEMP/instopt.cmd

delay
Delay the running of the command script.

DefaultDescriptionParameter

100Number of milliseconds to delay.time

Example:
delay -time 1000

Continues on next page
24 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands
Continued

delete
Delete a file.

DefaultDescriptionParameter

Name of file to delete, including file path.name

Example:
delete -path $RWTEMP/opt_l0.cmd

direxist
If a directory exists, go to a label.

DefaultDescriptionParameter

The complete path to the folder.path

The label to go to if the folder exists.label

Example:
direxist -path $TEMP/MyFolder -label CLEANUP_0

echo
Echo (print) a message to the VxWorks console output during the system start.

DefaultDescriptionParameter

The text to show on the FlexPendant.text

Examples:
echo -text "Installing configuration files"

fileexist
If a file exists, go to a label.

DefaultDescriptionParameter

File name, including the file path.path

The label to go to if the file exists.label

Example:
fileexist -path $RWTEMP/opt_l0.cmd -label CLEANUP_0

find_replace
Find and replace occurrences of a string in a file. Only the first occurrence of the
string in each line of the text is replaced.

DefaultDescriptionParameter

File to search, including the file path.path

String to find.find

String to replace with.replace

Example:
find_replace -path $HOME/myfile.txt -find "ABC" -replace "CBA"

Continues on next page
Application manual - RobotWare Add-Ins 25
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands

Continued

getkey
A number of selections can be made by user at the time of system creation. Values
of these selections come from product manifest file and are stored by the system
as a number of keys. The values stored in these keys can be read at the system
startup time using the getkey command.

DefaultDescriptionParameter

Name of the key whose value is to be retrieved.id

Name of the variable where the result (the key value) is stored.strvar

Label to go to if an error occurs.errlabel

Example:
getkey -id "LangSelect" -strvar $ANSWER -errlabel ENGLISH

goto
Go to a label.
The label to go to can either be specified directly, using the parameter label, or via
a string containing the label name, using the parameter strvar.

DefaultDescriptionParameter

A string containing the label name to go to.strvar

Label to go tolabel

Examples:
goto -strvar $ANSWER

goto -label END_LABEL

ifstr
If a string variable is equal to a string value, go to the specified label. If not equal,
the next statement is executed.
If the string variable is undefined, the command returns an error code.

DefaultDescriptionParameter

String variable to be compared with a string value.strvar

String value to compare the string variable with.value

Label to go to if the comparison is true.label

Example:
ifstr -strvar $ANSWER -value "IRT5454_2B" -label APP2

ifvc
If the script containing this command is run on the virtual controller, go to the
specified label.

DefaultDescriptionParameter

Label to go to if the script is run on a virtual controller.label

Example:
ifvc -label NO_START_DELAY

Continues on next page
26 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands
Continued

include
Include the script of another command file. Executes all commands in the script
and then return to the current script.

DefaultDescriptionParameter

The file name of the included script, including the file path.path

Example:
include -path $BOOTPATH/instdrv.cmd

math_lib_set_mem_size
Used to increase the size of the memory pool used for matrix calculations in RAPID.

DefaultDescriptionParameter

20000 bytesThe size in bytes.size

The default size is 20000 bytes.
Minimum allowed size is 20000 (same as default size).
Maximum allowed size is 20000000, that is, 20 MB.
If several calls to math_lib_set_mem_size are made, the largest value is used.

mkdir
Make a directory.

DefaultDescriptionParameter

Directory name, including the path.path

Example:
mkdir -path $RWTEMP/newdir

onerror
Set the default behavior of the script motor in case a script command fails and
returns an error status code.
It is always the most recent onerror command that sets the current default
behavior. The onerror semantics of included scripts does not affect the onerror
semantics of any script that includes it.

DefaultDescriptionParameter

continueDefines if an error should result in: go to label, continue execu-
tion, stop execution, system failure or return from included
script to the including script

action

Defines what behavior an error should result in. The allowed
values are:

• goto - Go to a label
• continue - Ignore errors and continue execution
• stop - Stop execution of startup task using assert()
• sysfail - Call SYS_FAIL()
• return - If used by a script included by another script,

execution returns to the calling script. The included
script returns an error code that needs to be handled by
the including script.

The label to go to if action is goto.label

Continues on next page
Application manual - RobotWare Add-Ins 27
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands

Continued

Examples:
onerror -action goto -label MY_LABEL1

onerror -action continue

onerror -action stop

onerror -action sysfail

onerror -action return

print
Prints a text to the VXWorks console.

DefaultDescriptionParameter

The text to show on the console.text

Example:
print -text "Copying files to $BOOTPATH"

rapid_delete_palette
Deletes a picklist in the FlexPendant programming window.

DefaultDescriptionParameter

The name of the picklist to be deleted.palette

Example:
rapid_delete_palette -palette "M.C 3"

rapid_delete_palette -palette "Settings"

rapid_delete_palette_instruction
Deletes a RAPID instruction in a picklist in the FlexPendant programming window.

DefaultDescriptionParameter

The name of the picklist.palette

The name of the RAPID instruction to be deleted.instruction

Example:
rapid_delete_palette_instruction -palette "Common" -instruction

"FOR"

rapid_delete_palette_instruction -palette "Common" -instruction
":="

rapid_delete_palette_instruction -palette "Common" -instruction
"MoveAbsJ"

rapid_delete_palette_instruction -palette "M.C 1" -instruction
"MoveJ"

register
Registers additional information from an xml to controller registers, depending on
the type parameter. The supported types are:

• Error messages (elogmes) – register the xml-file to the elogtext_registry.xml
file. Once registered, these messages can be used by the RAPID program.

• Error message titles (elogtitle) – register the xml-file to the
elogtext_registry.xml file.

Continues on next page
28 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands
Continued

• Options (option) - Registers the option in the option_registry.xml file. This
will enable automatic loading of FlexPendant applications from the tps folder
for the add-in.

• RAPID meta data (rapid_metadata) – Registers additional RAPID argument
settings to the rapid_metadata_registry.xml.

• RAPID texts (rapid_text) – Registers additional RAPID texts with support for
Unicode characters in rapid_text_registry.xml.

Applies to
type

DescriptionParameter

Defines which type (for example elogmes, elogtitle, option,
rapid_metadata, or rapid_text) that is being registered.

type

elogmes,
elogtitle

Error messages are stored in different domains. Which domain
to register in is defined by domain_no.

domain_no

For add-ins, domain_no should always be 9.

elogmes,
elogtitle, rap-
id_text

The first message number in the file being registered.min

elogmes,
elogtitle, rap-
id_text

The last message number in the file being registered.max

elogmes,
elogtitle, rap-
id_metadata,
rapid_text

The path to the language directory.prepath

elogmes,
elogtitle, rap-
id_metadata,
rapid_text

The rest of the path, after the language directory, including the
character \ (backslash) and the file name.

postpath

optionA flag indicating that the add-in is an external add-in.extopt

optionThe name of the add-in.description

optionThe path to the add-in.path

rapid_textThe resource name of the RAPID text table file.resource

Examples:
Register event log message for Add-In

register -type elogmes -domain_no 11 -min 5001 -max 5001 -prepath
$BOOTPATH/language/-postpath /CircleMove_elogtext.xml

-extopt

Register path for Add-In

register -type option -description MyAddIn -path $BOOTPATH

Register path for RAPID meta data

register -type rapid_metadata -prepath $HOME/ -postpath
my_rapid_edit_rules.xml

Register path for RAPID text resource with Unicode support

register -type rapid_text -min 1 -max 123 -resource myAddIn -prepath
$BOOTPATH/language/ -postpath

myAddInTexts.xml

Continues on next page
Application manual - RobotWare Add-Ins 29
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands

Continued

setenv
Define an environment variable and set its value.
An environment variable can be used in the RAPID code or in cfg files.
If you define the path to your add-in folder as an environment variable, this variable
can be used in your programs instead of hard coding the path.

DefaultDescriptionParameter

The environment variable to be assigned a new value.name

The string to assign to the environment variable.value

Example:
setenv -name CIRCLEMOVE -value $BOOTPATH

System environment variables
The following environment variables are set up by the system and cannot be
overwritten.

ValueEnvironment variable

/hd0a/<system name>/HOMEHOME

/hd0a/BACKUPBACKUP

/hd0a/<system name>/SYSPARSYSPAR

/hd0a/tempTEMP

/hd0a/<system name>SYSTEM

/hd0a/<system name>/Products/ROBOTWARE_6.XX.XXXXRELEASE

setstr
Define a string variable and set its value. The string can only be used in the
installation script.

DefaultDescriptionParameter

The string variable to be assigned a new string.strvar

The string to assign to the string variable.value

Examples:
setstr -strvar $LANG -value "en"

setstr -strvar $CFGPATH -value $SYSPAR

text
This command loads a text description file into a text resource of a package. It
accomplishes the same thing as the RAPID instruction TextTabInstall, but can
also specify different texts for different languages.
For more information, read about user message functionality in Application
manual - Controller software IRC5, and Overview on page 60.

DefaultDescriptionParameter

Name of the description file, including the file path.filename

"en"Package for building the text resource.package

Continues on next page
30 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands
Continued

Example:
text -filename $BOOTPATH/language/en/text_file.xml -package "en"

timestamp
Read the system clock and print number of seconds and milliseconds to the
standard output.
No parameters.

Application manual - RobotWare Add-Ins 31
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.2 Commands

Continued

2.3.3 Examples of install.cmd files

Example for CIRCLEMOVE
Install.cmd script for Add-In CIRCLEMOVE

echo -text "Installing CIRCLEMOVE Add-In"

Load configuration files

config -filename $BOOTPATH/CircleMove_sys.cfg -domain SYS -internal

config -filename $BOOTPATH/CircleMove_mmc.cfg -domain MMC

Define environment variable

setenv -name CIRCLEMOVE -value $BOOTPATH

Register elog messages

register -type elogmes -domain_no 11 -min 5001 -max 5001 -prepath
$BOOTPATH/language/ -postpath /CircleMove_elogtext.xml

register -type elogtitle -prepath $BOOTPATH/language/ -postpath
/CircleMove_elogtitles.xml

32 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.3.3 Examples of install.cmd files

2.4 RAPID modules

Overview
The RAPID code, implementing the functionality of your add-in, is written in a
system module (.sys) file (preferably <Add-In name>.sys).

Tip

By setting the argument NOSTEPIN on the module, stepwise execution of the
RAPID program will not step into the module. This makes a routine written in the
module behave like an instruction delivered from ABB.

RAPID code example
This is an example of how to create your own move instruction and how to use
your own error messages. An instruction, MoveCircle, is created that moves the
robot TCP in a circle around a robtarget, with the radius given as argument. If
MoveCircle is called with a too small radius, a message defined in an .xml file is
written to the event log, see Event log texts on page 36.

MODULE CIRCLEMOVE(SYSMODULE, NOSTEPIN)

VAR errnum ERR_CIRCLE:= -1;

VAR num errorid := 5001;

PROC MoveCircle(

robtarget pCenter,

num Radius,

speeddata Speed,

zonedata Zone,

PERS tooldata Tool

\PERS wobjdata WObj)

VAR robtarget p1;

VAR robtarget p2;

VAR robtarget p3;

VAR robtarget p4;

BookErrNo ERR_CIRCLE;

IF Radius < 2 THEN

ErrRaise "ERR_CIRCLE", errorid, ERRSTR_TASK, "Radius",
NumToStr(Radius,2), "2", ERRSTR_CONTEXT;

ENDIF

p1:=pCenter;

p2:=pCenter;

p3:=pCenter;

p4:=pCenter;

p1.trans:=pCenter.trans+[0,Radius,0];

p2.trans:=pCenter.trans+[Radius,0,0];

Continues on next page
Application manual - RobotWare Add-Ins 33
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.4 RAPID modules

p3.trans:=pCenter.trans+[0,-Radius,0];

p4.trans:=pCenter.trans+[-Radius,0,0];

MoveL p1,Speed,Zone,Tool\WObj?WObj;

MoveC p2,p3,Speed,z10,Tool\WObj?WObj;

MoveC p4,p1,Speed,Zone,Tool\WObj?WObj;

BACKWARD

MoveL p1,Speed,Zone,Tool\WObj?WObj;

ERROR

IF ERRNO = ERR_CIRCLE THEN

TPWrite "The radius is too small";

RAISE;

ENDIF

ENDPROC

ENDMODULE

34 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.4 RAPID modules
Continued

2.5 Custom event log messages

2.5.1 About event log messages

Overview
It is possible to create your own event log messages. The text of the message is
placed in one .xml file for each language. You can then use RAPID instructions
such as ErrRaise and ErrLog in the Circlemove example to raise an error using
this message. Language independent strings can be used as arguments to
ErrRaise and ErrLog, and be included in the message.

Two .xml files
Your event log messages are added to the system via two .xml files. One .xml file
contains all the information about the messages. The other one contains their
message number and title. Both are required.
These files can be given any name, as long as the installation script install.cmd
points out the correct file names. It is recommended to use the following names:

• <Add-In name>_elogtext.xml
• <Add-In name>_elogtitles.xml

Template files
Template files for the two required .xml files are included in the RobotWare
installation.

• template_elogtext.xml
• template_elogtitles.xml

The template files are located in the following directory in the RobotWare
installation: ...\RobotPackages\RobotWare_RPK_<version>\utility\Template\Elog.

Note

Navigate to the RobotWare installation folder from the RobotStudio Add-Ins tab,
by right-clicking on the installed RobotWare version in the Add-Ins browser and
selecting Open Package Folder.

Application manual - RobotWare Add-Ins 35
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.5.1 About event log messages

2.5.2 Event log texts

Overview
All event log messages must be written in the following .xml file:

• <Add-In name>_elogtext.xml
The messages must have unique numbers, within its domain, which are used to
reference the message text from the RAPID code.

Explanation of the .xml file
This is a list of the XML tags and arguments that you need to define. All other tags
and arguments should always look like in the example below. The complete syntax
is also shown in the example below.

DescriptionXML tag or
argument

Event log messages are divided into different domains. Domain number 8 is
called User events and is reserved for non-ABB messages. For add-ins, al-
ways use domain 8 to avoid conflict with messages defined by ABB.

domainNo

Language code for the text in the messages. The same two-letter code as
the name of the folder where the message .xml files are placed. This code
is defined by the standard ISO 639.

lang

The first message number in this file.min

The last message number in this file.max

Create one instance of Message for each error message.Message

A unique number, between 1 and 9999, identifying the error message.number
Make sure that the systems using this add-in will not have other add-ins using
the same message numbers.

A unique name for the message. Keep it short and descriptive.eDefine

The message title that will be shown in the event log.Title

The text describing the error, shown in the event log.Description

A string used as argument in the ErrRaise or ErrLog instruction will be
inserted in the message.

arg

The format of the argument sting from ErrRaise or ErrLog. For example
%.40s means that the string cannot be longer than 40 characters.

format

Determines which string argument from ErrRaise or ErrLog that should
be used in this arg tag. For example 1 means that the first string argument
is used.

ordinal

Continues on next page
36 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.5.2 Event log texts

Example of the .xml file
This .xml file <Add-In name>_elogtext.xml contains the text for an error message
that will look similar to this:

xx1400002871

<?xml version="1.0" encoding="utf-8"?>

<!--***-->

<!--The text description file for Elog Messages -->

<Domain elogDomain="PROC" domainNo="11" lang="en"
elogTextVersion="1.0" xmlns="urn:abb-robotics-elog-text"
min="5001" max="5001">

<Message number="5001" eDefine="ERR_ARG_TO_SMALL">

<Title>Too small value on argument</Title>

<Description>

Task: <arg format="%s" ordinal="1" /><p />

The argument <arg format="%s" ordinal="2" /> was set to <arg
format="%s" ordinal="3" /> but the minimum allowed value
is

<arg format="%s" ordinal="4" />. <p />

Context: <arg format="%s" ordinal="5" />

<p />

</Description>

</Message>

</Domain>

Application manual - RobotWare Add-Ins 37
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.5.2 Event log texts

Continued

2.5.3 Event log titles

Overview
For the internal handling of event log messages, the following .xml file listing the
message numbers and their titles is necessary:

• <Add-In name>_elogtitles.xml

Explanation of the .xml file
This is a list of the .xml tags and arguments that you need to define. For the
complete syntax, see the example below.

DescriptionXML tag or
argument

Create one instance of Title for each event log message.Title
The text in the Title tag must be identical to the text in the event log text
.xml file.

The same event log message number as in the event log text .xml file.number

Example of the .xml file
<?xml version="1.0" encoding="utf-8"?>

<ExtractTitles>

<Title domain="11" number="5001">Too small value on argument</Title>

</ExtractTitles>

38 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.5.3 Event log titles

2.5.4 Validating event log .xml files

Introduction
A validation tool checks that the event log .xml file is correctly formatted, using the
corresponding XML schema file, elogtext.xsd.

• The schema file (elogtext.xsd) and the file template_elogtest.xml are available
in the RobotWare installation, see Template files on page 35.

• The command line tool XMLFileValidator can be downloaded from theRobot-
Studio Online Community, where it is included in the Tools and Utilities
package.

To run the validation, start the tool and use your search paths using the principle
below:

xmlfilevalidator elogtext.xsd my_elogtext.xml

The result of the validation is displayed in the console. Detailed error information
including row- and column references, is displayed for any found formatting errors.

Prerequisites
The XMLFileValidator is provided as-is.
Microsoft .NET framework version 2.0 or later is required.

Application manual - RobotWare Add-Ins 39
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.5.4 Validating event log .xml files

http://new.abb.com/products/robotics/robotstudio
http://new.abb.com/products/robotics/robotstudio

2.6 System parameters related to add-in development

2.6.1 About cfg files

Overview
The cfg files are used to define instances of system parameter types in a specific
domain. The specified instances are then created by loading the cfg file. Only one
domain can be specified per cfg file.
The file shall be formatted according to the rules in the following sections.

Domain specifier
A cfg file must start with a name of a domain where the specified instances will be
created.
The row must contain the following information, where <version> and <revision>
are optional:

<domain name>:CFG_1.0:<version>:<revision>::

Example

Domain EIO without version numberEIO:CFG_1.0::

Domain EIO with version number 5.0EIO:CFG_1.0:5:0::

Domain EIO with version number 6.0EIO:CFG_1.0:6:0::

Comments
A comment row starts with '#'.

Type specifiers
The domain specifier is followed by one or more parameter type specifiers and
their instances.

• A type specifier should always be preceded by a row containing a single
character '#'. (Not mandatory)

• A type specifier consists of a parameter type name directly followed by a ':'.
• There should be an empty row between the type name and the first instance.

(Not mandatory)
• There should be no more rows after the last instance row in a cfg file. (Not

mandatory)
• Add a description of all attributes in a type directly after the type specifier.

This is helpful for the user to understand the type. (Not mandatory)
See cfg file examples later in this section.

Instances and attributes
The type specifier is followed by zero or more instances. Each instance contains
one or several attributes defining its properties. Attributes can be mandatory or
optional.

Continues on next page
40 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.1 About cfg files

Mandatory attributes must be specified explicitly in the cfg file otherwise an error
will be generated when loading the file. Optional attributes that are not specified
in the cfg file will be set to the default value for this attribute at loading. If the value
of the optional attribute is specified, then the specified value will be used.
Each instance shall start with the Name attribute (if the instance has a name). Each
attribute shall start with '-' (dash) followed by the attribute name, a blank space
and value. Blank spaces are not allowed in the value except for string values with
quotation marks.
Example:

-name MoveCircle -param_nr 6

Quotation marks can be used for string values. Note, all characters (including
spaces) inside the quotation marks will be treated as one single string.
Example:

-name "M.C 1" -type "MMC_MC1"

Single or multiple rows
All attributes and their values in an instance can be put in a single row or in multiple
rows. Comments or empty rows are not allowed in an instance. Several attributes
per row are allowed.
For instances with multiple rows, each row in an instance shall end with '\'
(backslash), except for the last row. The name and the value of an attribute cannot
be separated by '\', that is, they must be on the same row.
For example, the following is not valid:

-name \

"M.C 1"

Arrays
If an attribute is of an array type, then the attribute value may consist of several
comma separated values. Blank spaces and the multiple row separator '\' cannot
be used inside the array.
Example:

-name MoveCircle -default_struct 1,1,1,1,1,0

Attribute of type Boolean
If the attribute is of type Boolean, giving only the attribute name in the cfg file will
set the value to true.
Example:

-hidden

Example of cfg file
SIO:CFG_1.0::

#

COM_PHY_CHANNEL:

-Name "COM1" -Connector "COM1"

-Name "LAN1" -Connector "LAN"

#

Continues on next page
Application manual - RobotWare Add-Ins 41
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.1 About cfg files

Continued

COM_TRP:

-Name Name of transmissions protocol (MAN)

-Type Name of transmissions protocol type (MAN)

-PhyChannel Name of the physical channel (MAN)

-HostName Name of host (OPT)

-RemoteAdress Remote address (OPT)

-Gateway Default gateway (OPT)

-SubnetMask SubNetmask (OPT)

-Name "TCPIP1" -Type "TCP/IP" -PhyChannel "LAN1"

42 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.1 About cfg files
Continued

2.6.2 Topic Controller

About the topic Controller
This section describes system parameters that belong to the topic Controller (that
is, in the configuration file sys.cfg) and that are closely related to add-in
development.
The configuration of which program modules to load is made in the topicController.
All files containing the RAPID code for the add-in must be defined here.
For more information about the types and parameters of the Controller topic, see
Technical reference manual - System parameters.

Automatic loading of modules (CAB_TASK_MODULES)
The type CAB_TASK_MODULES is used to define modules to be loaded when the
controller is started.
For more information, see Technical reference manual - System parameters.

DescriptionParameter

The name of the file including the path on the controller.File
An environment variable can preferably be used. That is, <environ-
ment variable>:/<file name>. See setenv on page 30.

Name of a task, if it should only be loaded to one specific task.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

Task

Defines if the contents of a module should be reachable from all
tasks. The module is not loaded, it is installed, but reachable from
all tasks.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

Shared

Note

The parameter Shared cannot be combined with Installed.

Defines if the module should be loaded into all tasks.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

AllTask

Defines if the module should be loaded into all motion tasks.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

AllMotionTask

Continues on next page
Application manual - RobotWare Add-Ins 43
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.2 Topic Controller

DescriptionParameter

A module can be loaded or installed.Installed
A loaded module will behave like a module manually loaded from
the teach pendant.
An installed module will behave like a built in module. By default the
attributes NOVIEW and NOSTEPIN are set, even if not stated in the
module declaration. Thus it will not be visible from the FlexPendant
and can only be removed by using the restart mode Reset system.
It will not be possible to step into a routine in such a module with
FWD.
It is recommended that all application modules are installed as built
in modules, since then they will be handled as part of the controller
and quite separated from the user´s modules.

Note

The parameter Installed cannot be combined with Shared.

RAPID routines and data in this module are hidden from the user.Hidden

Example
CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMove.sys" -Installed -AllTask

Tip

When loading modules automatically, a correct file path must be used.
Since the name of the directory for the add-in can be changed, the files are often
copied to the HOME directory so the file path is unmistakable for "automatic
loading of modules".
This can be a problem when doing backup between releases.
Since all files in the HOME directory are saved to the backup, new files copied
from the add-in directory will be overwritten by the old files in the backup.
Instead of copying the files to the HOME directory, the files can remain in the
add-in directory and therefor avoid copying the files from the HOME directory to
the backup.
To access the files in the add-in directory an environment variable must be used,
therefore use setenv on page 30.

Modules included in a backup
Two things affects what to include when creating a backup:

1 From where the module is loaded.
2 How the configuration file is loaded.

Modules not included in the backup
A module will not be included in the backup:

• if the module is loaded from $RELEASE. For example:
-File "RELEASE:/options/xxx.modx" -Task "T_ROB1"

Continues on next page
44 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.2 Topic Controller
Continued

• if the module is loaded from any user defined environment variable, using
setenv on page 30.

A module will not be included in the backup and no configuration entries will be
listed in the sys.cfg (BACKUP/SYSPAR/SYS.CFG):

• if the module is loaded from $RELEASE, or any user defined environment
variable, and the loaded configuration file is set to -internal. For example:
config -filename $RELEASE/options/xxx.cfg -domain SYS

-internal

Modules included in the backup
A module will be included in the backup:

• if the module is loaded, installed, or shared from elsewhere without
$RELEASE or any user defined environment variable

A module will be included in the backup but no configuration entries will be listed
in the sys.cfg (BACKUP/SYSPAR/SYS.CFG):

• if the module is loaded from elsewhere except $RELEASE or any user defined
environment variable, and the loaded configuration file is set to -internal.
Only loaded modules will be included in the backup, no installed or shared.

Exclude files and directories at backup
By default all files and directories in theHOME directory are included in the backup.
It is possible to exclude HOME directory files and directories from the backup. It
is also possible to include files or directories to the backup that are not located in
the HOME directory.
The text must be edited directly in the SYS.CFG file for type BACKUP_RESTORE.

DescriptionParameter

This file in the HOME directory shall not be included
in the backup.

ExcludeFileFromHomeAtBackup

This directory in the HOME directory shall not be in-
cluded in the backup.

ExcludeDirFromHomeAtBackup

This file is not located in theHOME directory, but shall
be included in the BACKINFO directory in the backup.

IncludeFileAtBackup

This directory is not located in the HOME directory,
but shall be included in the BACKINFO directory in
the backup.

IncludeDirAtBackup

Example
BACKUP_RESTORE:

-ExcludeDirFromHomeAtBackup "SecretDirectory"

-IncludeFileAtBackup "SYSTEM:/ImportantFile.xml"

Continues on next page
Application manual - RobotWare Add-Ins 45
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.2 Topic Controller

Continued

Note

The main HOME and DATA directory is intended for use by the end user RAPID
program and user files.
In RobotWare 7, each add-in has its own dedicated HOME and DATA directory
under the AddInData location that is separated from the main HOME and DATA
directory. For more information see Introduction on page 21.

46 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.2 Topic Controller
Continued

2.6.3 Topic I/O System

About the topic I/O System
This section describes system parameters that belong to the topic I/O System (that
is, in the configuration file eio.cfg).
For more information about the types and parameters of the I/O System topic, see
Technical reference manual - System parameters.

Hiding I/O signals to the user
Add-ins can use virtual signals for internal communication, for example to
communicate between RAPID tasks. It is possible to hide such signals from
browsing by setting the Access property, for each signal, to internal.
It is possible to modify a hidden signal from RAPID, if the name of the signal is
known and if the category of the signal is set to RAPID.

Example
EIO:CFG_1.0::

#

EIO_SIGNAL:

-Name "DOAccessInternal" -SignalType "DO" -Access "internal"

-Name "DOAccessInternalRAPID" -SignalType "DO" -Access "internal"
-Category "rapid"

Application manual - RobotWare Add-Ins 47
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.3 Topic I/O System

2.6.4 Topic Man-machine Communication

About the topic Man-machine Communication
This section describes some of the types and system parameters in the topic
Man-machine communication (that is, the configuration file mmc.cfg). It is used to
define how a self-developed instruction should be presented on the FlexPendant,
for example which menu to select it from (pick lists) and which argument values
should be used as default (RAPID rules).
A short example is given for each type, and an example of an entire cfg file is
shown after the type descriptions.

Pick list titles (MMC_PALETTE_HEAD)
It is possible to add custom pick lists alongside with the predefined pick lists that
are included by default. The title for each custom pick list is defined in the
MMC_PALETTE_HEAD type.

DescriptionParameter

The title of the custom pick list.name

The type that contains the instruction names of the pick list¨type

Example
MMC_PALETTE_HEAD:

-name "M.C 1" -type "MMC_MC1"

-name "SpotWelding" -type "MMC_SPOTWELD"

Custom pick lists (MMC_MC1, MMC_MC2, MMC_MC3, etc.)
For each custom pick list there shall be an alias type definition to configure which
instructions will be present in the pick list.

DescriptionParameter

The name of the instruction.name

Note

• The pick list types contains more parameters and more functionality. For
more information about these, see section Most Common Instruction Types
in Technical reference manual - System parameters.

• Note the use of the equal sign to define the alias type, where the type name
defined in MMC_PALETTE_HEAD is defined as an alias of the base type
MMC_PALETTE.

Example
MMC_MC1 = MMC_PALETTE:

-name MoveCircle

MMC_SPOTWELD = MMC_PALETTE:

-name "SpotL"

-name "SpotJ"

Continues on next page
48 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication

Default arguments (MMC_REAL_ROUTINE)
MMC_REAL_ROUTINE is used to define which arguments should have proposed
values, that is, a default value when the instruction is added on the FlexPendant.

DescriptionParameter

The instruction name.name

Defines which arguments should have proposed values.
• 0: No proposed value
• 1: A proposed value. If alternative arguments, 1 indicates that the

first alternative argument should be used with a proposed value.
• 2: Only for alternative arguments. The second alternative argument

should be used with a proposed value.
• 3: Only for alternative arguments. The third alternative argument

should be used with a proposed value.
• 4: Only for alternative arguments. The fourth alternative argument

should be used with a proposed value.

default_struct

Defines if the instruction should be hidden when showing RAPID routines.
If hidden is set, the instruction will not be shown when choosing an in-
stance for ProcCall or Move PP to Routine.

hidden

For changes of the hidden parameter to take effect, the controller must
be restarted by using the restart mode Reset RAPID or Reset system.
A restart is not enough.

Tip

It is not necessary to specify default_struct if there should only be proposed
values for required arguments.

Example
The instruction TriggInt is defined with the following arguments:

TriggInt TriggData Distance [\Start] | [\Time] Interrupt

Argument alternativeArgument numberArgument

01TriggData

02Distance

13Start

23Time

04Interrupt

Note that Start and Time are alternative arguments and therefore have the same
argument number.
The following alternatives are examples of how to configure an instance of the type
MMC_REAL_ROUTINE:
Proposed values for TriggData, Distance, and Interrupt (the same result as
if default_struct is not defined):

-name TriggInt -default_struct 1,1,0,1

Proposed values for TriggData, Distance, Start, and Interrupt:
-name TriggInt -default_struct 1,1,1,1

Continues on next page
Application manual - RobotWare Add-Ins 49
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication

Continued

Proposed values for TriggData, Distance, Time, and Interrupt:
-name TriggInt -default_struct 1,1,2,1

Argument reuse (MMC_INST_NOT_REUSING_PREV_OPT_ARG)
The proposed value of an instruction argument can be the same as (or in sequence
with) the same argument for a previous instruction. For example, if a work object
has been used in the previous move instruction, the same work object is proposed
when a new move instruction is added.
If the reusing of argument values is not desired for some arguments, those
arguments are specified in the typeMMC_INST_NOT_REUSING_PREV_OPT_ARG.
Even if default_struct in the type MMC_REAL_ROUTINE is set to 0, an argument
used in the previous instruction will be used in the next instruction. To avoid this,
these arguments must also be specified in
MMC_INST_NOT_REUSING_PREV_OPT_ARG.

DescriptionParameter

Specifies the argument numbers that should not reuse values from pre-
vious instruction calls.

param_nr

Example
The instruction MoveL is defined with the following arguments:

MoveL [\Conc] ToPoint [\ID] Speed [\V] | [\T] Zone [\Z] [\Inpos]
Tool [\WObj] [\Corr] [\TLoad]

As the arguments Conc, V, T, Z, and Inpos should not be reused, the instance of
MMC_INST_NOT_REUSING_PREV_OPT_ARG would look like this:

MMC_INST_NOT_REUSING_PREV_OPT_ARG:

-name MoveL -param_nr 1,5,7,8

Note that both V and T have argument number 5, as they are alternative arguments.

Argument Name Rules (MMC_REAL_PARAM)
The type MMC_REAL_PARAM is used to specify how to generate the proposed
identifier for instruction arguments.
Even arguments that have default_struct in MMC_REAL_ROUTINE set to 0 and
are defined in param_nr in MMC_INST_NOT_REUSING_PREV_OPT_ARG may
need to be defined in MMC_REAL_PARAM. No argument proposal will be used
when the instruction is chosen from a pick list, but if the argument is actively
selected it will use the identifier specified in MMC_REAL_PARAM.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument name>
(for example MoveL_Tool).

name

It is also possible to define a common argument name (common_<argument
name>) to be used in the type MMC_COMMON_PARAM.

Continues on next page
50 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication
Continued

DescriptionParameter

Specifies how the argument proposal should be generated. The following
rules can be used:

• NONE - Unexpanded placeholder. No proposal is generated.
• CUR - The parameter method is used to define the argument proposal.

For example used when the tool argument should use the current tool.
• DEF - The argument proposal should be a default value defined by the

parameter def_name.
• SEQ - The argument proposal is based on the previous instruction with

a similar argument. Based on the identifier used in the previous instruc-
tion, an increment of the index is used to create a new identifier. For
example, if the robtarget of the previous move instruction is p10, the
next move instruction will propose p20 (unless p20 is already used,
then p30, p40, ... will be tried until an identifier is found that is not
already used). If no similar argument is found, looking 100 instructions
back, a data value is used instead of an identifier.

• LAST - The argument proposal gets its value from the previous instruc-
tion with a similar argument. If no similar argument is found, looking
100 instructions back, a default value specified by def_name is used.

• VAL - No argument identifier is used. A literal value is used instead.

name_rule

Method to be called if name_rule is CUR or SEQ. Supported methods are:
• hirule_robtarget - robtarget symbol name increment value
• hirule_jointtarget - jointtarget symbol name increment value
• hirule_tooldata - current tooldata
• hirule_wobjdata - current wobjdata
• hirule_tloaddata - current tload

method

Default name needed if name_rule is LAST or DEF.

Note

A string must have 3 quotation marks:
-name Direction -name_rule LAST -def_name """Z"""

def_name

Example
This example shows how some arguments for the MoveL instruction are configured.
It also defines the common arguments common_point, common_speed, and
common_zone, that are used in the type MMC_COMMON_PARAM.

Argument proposalArgument

If V is actively selected it should:
1 use the value from the last instruction using V
2 use the default value 1000

V

No identifier should be proposed for ID. A numeric value is pro-
posed instead. The proposed numeric value is defined in
MMC_REAL_DATATYPE.

ID

If T is actively selected it should use the default value 5.T

If Z is actively selected it should:
1 use the value from the last instruction using Z
2 use the default value 50

Z

The proposal for Tool should be defined by the method
hirule_tooldata.

Tool

The proposal for WObj should be defined by the method
hirule_wobjdata.

WObj

Continues on next page
Application manual - RobotWare Add-Ins 51
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication

Continued

Argument proposalArgument

The proposal for TLoad should be defined by the method
hirule_tloaddata.

TLoad

The proposal for common_point should:
1 be a sequential increase from the last robtarget
2 be defined by the method hirule_robtarget

common_point

The proposal for Tool should:
1 use the value from the last instruction using speeddata
2 use the default value 1000

common_speed

The proposal for common_zone should:
1 use the value from the last instruction using zonedata
2 use the default value z50

common_zone

MMC_REAL_PARAM:

-name MoveL_V -name_rule LAST -def_name 1000

-name MoveL_ID -name_rule VAL

-name MoveL_T -name_rule DEF -def_name 5

-name MoveL_Z -name_rule LAST -def_name 50

-name MoveL_Tool -name_rule CUR -method hirule_tooldata

-name MoveL_WObj -name_rule CUR -method hirule_wobjdata

-name MoveL_TLoad -name_rule CUR -method hirule_tloaddata

-name common_point -name_rule SEQ -method hirule_robtarget

-name common_speed -name_rule LAST -def_name v1000

-name common_zone -name_rule LAST -def_name z50

Argument Identifier Rules (MMC_COMMON_PARAM)
With the type MMC_COMMON_PARAM, a common argument (defined in
MMC_REAL_PARAM) is used to define an argument proposal.
For example, a common argument defining proposals for all ToPoint arguments
can be defined inMMC_REAL_PARAM. InMMC_COMMON_PARAM, the ToPoint
argument for all move instructions can use that common argument.

DescriptionParameter

The instruction argument, defined as <instruction name>_<ar-
gument name> (for example MoveL_Tool).

name

Name of the common argument defined in
MMC_REAL_PARAM.

common_space_name

Example
In this example the argument proposals for the MoveL arguments ToPoint, Speed,
and Zone are defined by common_point, common_speed, and common_zone.

MMC_COMMON_PARAM:

-name MoveL_ToPoint -common_space_name common_point

-name MoveL_Speed -common_space_name common_speed

-name MoveL_Zone -common_space_name common_zone

Continues on next page
52 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication
Continued

Data Value Rules (MMC_REAL_DATATYPE)
The typeMMC_REAL_DATATYPE is used to specify how to generate the proposed
value for a data type.
When an instruction is added, the proposed argument identifiers are defined in
MMC_REAL_PARAM, while the values of those arguments are defined in
MMC_REAL_DATATYPE.

DescriptionParameter

Name of the data type.name

Default base identifier for the data (for example tool). The identifier for
the data is created from the def_name and an index. If nothing else is
defined, the index starts at 1 and the increment for each data is 1 (for
example the first tooldata is called tool1, the second is called tool2 and
so on).

def_name

Specifies how the value of the new data should be generated:
• NONE - No initialize value for non-value data type.
• CUR - The parameter method is used to define the data value. For

example used when a robtarget is given the value of the current
robot TCP.

• DEF - The data value should be a default value defined by the
parameter use_value.

• SEQ - The data value is based on the previous data of the same
data type. The previous value is increased with a value defined
by use_value. If no data is found, when looking up to 100 state-
ments back, a zero value is used.

value_rule

Method to be called if value_rule is CUR. Supported methods are:
• hirule_robtarget - current robot TCP robtarget value
• hirule_jointtarget - current robot TCP jointtarget value
• hirule_tooldata - current tooldata value
• hirule_wobjdata - current wobjdata value
• hirule_tloaddata - current tload value

method

Default value if value_rule is DEF or SEQ. Also used as increment value
if value_rule is SEQ.

use_value

Data object type (i.e. CONST, VAR, PERS or TASK PERS).object_type

Method to be called when validating data. Supported methods are:
• hirule_validate_tooldata
• hirule_validate_wobjdata
• hirule_validate_robtarget
• hirule_validate_orient
• hirule_validate_pose
• hirule_validate_progdisp
• hirule_validate_loaddata

validate_hook

Example
This example defines the proposed values for the data types identno and
robtarget.

Proposed data valueData type

If no identno exists, the value is 10. Otherwise the value from the last
identno is increased with 10.

identno

Continues on next page
Application manual - RobotWare Add-Ins 53
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication

Continued

Proposed data valueData type

The new robtarget gets the value of the current robot TCP.robtarget
A validation is used so that the value of a robtarget cannot be changed
to an incorrect format.

MMC_REAL_DATATYPE:

-name identno -def_name id -value_rule SEQ -use_value 10 \

-object_type CONST

-name robtarget -def_name p -value_rule CUR \

-method hirule_robtarget -object_type CONST\

-validate_hook hirule_validate_robtarget

Highlight argument (MMC_SELECT_PARAM)
When an instruction is added, one of the arguments can be automatically selected
for further definitions. This is defined in the type MMC_SELECT_PARAM. For
example, when adding a MoveC instruction, the CirPoint is set to the current TCP
value and the ToPoint is selected for the required modify position.

DescriptionParameter

Parameter number for the argument to be selected.param_nr

Example
The instruction MoveC is defined with the following arguments:

MoveC [\Conc] CirPoint ToPoint [\ID] Speed [\V] | [\T] Zone [\Z]
[\Inpos] Tool [\WObj] [\Corr] [\TLoad]

Since a modify position of ToPoint is required after the instruction is added, the
argument ToPoint is selected:

MMC_SELECT_PARAM:

-name MoveC -param_nr 3

Work objects (MMC_INSTR_WITH_WOBJ)
MMC_INSTR_WITH_WOBJ is used when adding instructions from the FlexPendant,
for which no default arguments are specified in MMC_REAL_PARAM.
It checks if the instruction has a \WObj optional argument, and what position the
optional argument has in the instruction. If the active work object on the FlexPendant
differs from the default work object, wobj0, then the optional argument \WObj in
the instruction is added and set to the active work object.

DescriptionParameter

Name of the instruction.name

Argument number for the \WObj optional argument.param_nr

Example
MMC_INSTR_WITH_WOBJ:

-name MoveL -param_nr 10

Continues on next page
54 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication
Continued

Load objects (MMC_INSTR_WITH_TLOAD)
MMC_INSTR_WITH_TLOAD is used when adding instructions from the FlexPendant,
for which no default arguments are specified in MMC_REAL_PARAM.
It checks if the instruction has a \TLoad optional argument, and what position the
optional argument has in the instruction. If the active payload on the FlexPendant
differs from the default payload, load0, then the optional argument \TLoad in the
instruction is added and set to the active payload.

DescriptionParameter

Name of the instruction.name

Argument number for the \TLoad optional argument.param_nr

Example
MMC_INSTR_WITH_TLOAD:

-name MoveL -param_nr 12

Circular points (MMC_INSTR_WITH_CIR_POINT)
MMC_INSTR_WITH_CIR_POINT is used for instructions with circular points,
CirPoint.
After a position is modified, the controller tries to update the planned path to use
the new position. This functionality needs to know if a target is a circular point.

DescriptionParameter

Name of the instruction.name

Argument number for the circular point, CirPoint.param_nr

Example
MMC_INSTR_WITH_CIR_POINT:

-name MoveC -param_nr 2

Arguments not available for modify position (MMC_NO_MODPOS)
MMC_NO_MODPOS defines instruction arguments that should not be modified
with modify position, even though they are of data type robtarget or
jointtarget.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument
name> (for example MoveL_Tool).

name

Example
The instruction MToolTCPCalib is defined with the following arguments:

MToolTCPCalib Pos1 Pos2 Pos3 Pos 4 Tool MaxErr MeanErr

Pos1, Pos2, Pos3, Pos4 are of type jointtarget but should not be available for
modify position:

MMC_NO_MODPOS:

-name MToolTCPCalib_Pos1

-name MToolTCPCalib_Pos2

-name MToolTCPCalib_Pos3

-name MToolTCPCalib_Pos4

Continues on next page
Application manual - RobotWare Add-Ins 55
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication

Continued

Targets not available for modify position when additional axes offset is active
(MMC_NO_DATA_MODPOS_IF_ACT_EOFFS)

MMC_NO_DATA_MODPOS_IF_ACT_EOFFSdefines data types, targets, that should
not be modified with modify position by url (e.g. from Program Data view on the
FlexPendant) if an additional axes offset is active.

DescriptionParameter

The name of the data type.name

Example
MMC_NO_DATA_MODPOS_IF_ACT_EOFFS:

-name jointtarget

Optional argument for considering additional axes offset (MMC_USE_ACT_EOFFS_IN_MODPOS)
MMC_USE_ACT_EOFFS_IN_MODPOS is used to define instructions with optional
arguments, that controls if an active additional axes offset shall be considered or
not, when calculating the current position.

DescriptionParameter

The name of the instruction.name

Identifies the optional argument.param_nr

Defines if the offset shall be considered if the argument is present
(1) or when it is not present (0).

use_if_present

Example
MMC_USE_ACT_EOFFS_IN_MODPOS:

-name MoveAbsJ -param_nr 4 -use_if_present 0

Between points (MMC_NO_PC_MOVEMENT)
For instructions with between point, such as MoveC, the program pointer should
not continue to the next instruction after modify position of the between point. The
type MMC_NO_PC_MOVEMENT is used to define the between points for which a
modify position will not move the program pointer to the next instruction.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument
name> (for example MoveC_CirPoint).

name

Example
MMC_NO_PC_MOVEMENT:

-name movec_cirpoint

Continues on next page
56 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication
Continued

Without between point (MMC_NO_PC_MOVEMENT_CLEAR_PATH)
For instructions without between point, such as SpotL, the program pointer should
not continue to the next instruction and a clear path is performed after modify
position. The type MMC_NO_PC_MOVEMENT_CLEAR_PATH is used default in
Spot systems to avoid disturbing event log messages and regain dialogs after
modifying position.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument
name>.

name

Example
MMC_NO_PC_MOVEMENT_CLEAR_PATH:

-name SpotL_ToPoint

-name SpotJ_ToPoint

-name SpotML_ToPoint

-name SpotMJ_ToPoint

Service routines (MMC_SERV_ROUT_STRUCT)
MMC_SERV_ROUT_STRUCT is used to specify instructions that should be defined
as service routines.

DescriptionParameter

Instruction name.name

Example
In this example the instruction LoadIdentify is defined as a service routine:

MMC_SERV_ROUT_STRUCT:

-name LoadIdentify

Change of motion mode (MMC_CHANGE_MOTION_MODE)
For some move instructions it is possible to change motion mode (for example
from MoveL and MoveJ). Which instructions allow change of mode and what
instruction it is changed to is defined in MMC_CHANGE_MOTION_MODE.

DescriptionParameter

Name of the existing instruction.name

Name of the instruction it should be changed to.shift_name

Motion mode of instruction after changing motion mode.shift_mode

Defines an argument number. If this argument is set, change of
motion is not allowed.

param_restr

Example
This example specifies that the instruction MoveL can be changed into a MoveJ

instruction. If the argument Corr is set this change of motion mode cannot be
done.

MMC_CHANGE_MOTION_MODE:

-name MoveL -shift_name MoveJ -shift_mode Joint -param_restr 11

-name MoveJ -shift_name MoveL -shift_mode Linear

Application manual - RobotWare Add-Ins 57
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.4 Topic Man-machine Communication

Continued

2.6.5 Example cfg files

Overview
This section contains cfg example files for the add-inCirclemove and the instruction
MoveCircle.

CircleMove_sys.cfg
This example uses the environment variable CIRCLEMOVE that is defined in
install.cmd, see Examples of install.cmd files on page 32.

SYS:CFG_1.0::

Installation of RAPID routines for Add-In CircleMove

$Revision: 1.7 $

#

CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMove.sys" -Install -AllTask

CircleMove_mmc.cfg
The instruction MoveCircle is defined with the following arguments:

MoveCircle pCenter Radius Speed Zone Tool [\WObj]

To define how MoveCircle should behave on the FlexPendant, the following
configuration is placed in a file called CircleMove_mmc.cfg, which is added to the
CircleMove add-in.

MMC:CFG_1.0::

MMC : RAPID PROGRAMMING RULES FOR MODULE CIRCLEMOVE

$Revision: 1.7 $

#

MMC_MC1 = MMC_PALETTE:

-name MoveCircle

#

MMC_REAL_ROUTINE:

-name MoveCircle -default_struct 1,1,1,1,1,0 -hidden

#

MMC_REAL_PARAM:

-name MoveCircle_pCenter -name_rule SEQ -method hirule_robtarget

-name MoveCircle_Radius -name_rule LAST def_name 10

-name MoveCircle_Speed -name_rule LAST -def_name v1000

-name MoveCircle_Zone -name_rule LAST -def_name z50

-name MoveCircle_Tool -name_rule CUR -method hirule_tooldata

-name MoveCircle_WObj -name_rule CUR -method hirule_wobjdata

#

Continues on next page
58 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.5 Example cfg files

MMC_INSTR_WITH_WOBJ:

-name MoveCircle -param_nr 6

Application manual - RobotWare Add-Ins 59
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.6.5 Example cfg files

Continued

2.7 Using text resources from files

Overview
It is possible to use text strings from a text table file. This is useful, for example,
when a message to the user should be displayed in different languages.
How to use text table files is described in section Advanced RAPID in Application
manual - Controller software IRC5.

Including language files from your add-in
Localized files can be installed by moving their installation to a separate install.cmd
file and including it from the main installation script.

include -path "$BOOTPATH/language/install.cmd"

The add-in folder must contain a subfolder called language with a separate
install.cmd file used to install the localized files. The localized files are placed in
language specific subfolders of the folder language. The subfolders should be
named with the 2 letter language code, for example en, de, fr etc. See illustration
in section Required files and file structure on page 17.
The file install.cmd will call the file instlang.cmd in the language folder once for
every installed language on the robot controller with the variable $LANG set to the
corresponding language code. After this process has completed the $LANG variable
will always be reset to en.
If using the RAPID instruction TextGet, place the text strings in the respective
language folder in a file ending with text.xml.

Example
Example of instlang.cmd, how to install a localized file.

fileexist -path $BOOTPATH/language/$LANG/CircleMove_text.xml -label
INSTALL_FILE

goto -label END

#INSTALL_FILE

text -filename $BOOTPATH/language/$LANG/CircleMove_text.xml -package
$LANG

#END

Unicode characters in UI and TP instructions in RAPID
To support Unicode characters in the text, the registry rapid_text is needed.
This enables text tables with UTF-8 encoding.
Place text strings in the respective language folder in a file ending with text_utf8.xml.
More information about installation of localized language files can be found above
in the overview.
The following examples are available in the AddIn Packaging Tool.

Example of how to install/register Unicode files
register -type rapid_text -resource circlemove_text -min 200 -max

206 -prepath $BOOTPATH/language/ -postpath
/CircleMove_text_utf8.xml

Continues on next page
60 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.7 Using text resources from files

Example of how to use/get Unicode in RAPID
To get Unicode text on the FlexPendant, each string resource must be written as:

{{<resourceName:textNumber}}

Example of resource string to get string 205 in the resource in the AddIn:
{{circlemove_text:205}}

Use ; (semicolon) as separator to add arguments after the resource string.
{{circlemove_text:206;1.00;2}}

Strings with arguments in the resource file should be written as below with 1 as
start index.

The radius {1} is too small, minimum is {2} mm

The result on the FlexPendant will be:
The radius 1.00 is too small, minimum is 2 mm

Application manual - RobotWare Add-Ins 61
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.7 Using text resources from files

Continued

2.8 Hiding RAPID content

Overview
It is possible to hide the implementation of RAPID code on the FlexPendant.
Developers of add-ins often expose a public interface to their functionality that
other RAPID programmers and end users can access. It is a good programming
practice to hide parts of the internal implementation that are not intended for the
users of your add-in.
This section describes some recommendations for hiding the code.

Split the code into two modules
One way of hiding the code is to split the code into two modules. The first module
contains the implementation that shall be hidden, and the second module contains
the public interface which is visible. The interface module contents will be visible
but the code can be encrypted.
For more information, see Automatic loading of modules (CAB_TASK_MODULES)
on page 43.

Example
sys.cfg

CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMoveImpl.sys" -Hidden -AllTask

-File "CIRCLEMOVE:/CircleMove.sys" -AllTask

CircleMove.sys - Interface
MODULE CIRCLEMOVE(SYSMODULE, NOSTEPIN)

PROC MoveCircle(

robtarget pCenter,

num Radius,

speeddata Speed,

zonedata Zone,

PERS tooldata Tool

\PERS wobjdata WObj)

MoveCirecleImpl pCenter, Radius, Speed, Zone, Tool \WObj?WObj;

ENDPROC

ENDMODULE

Continues on next page
62 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.8 Hiding RAPID content

CircleMoveImpl.sys - Implementation
MODULE CIRCLEMOVEIMPL(SYSMODULE, NOVIEW)

VAR errnum ERR_CIRCLE:= -1;

VAR num errorid := 5001;

PROC MoveCircleImpl(

robtarget pCenter,

num Radius,

speeddata Speed,

zonedata Zone,

PERS tooldata Tool

\PERS wobjdata WObj)

...

ENDPROC

ENDMODULE

Use hidden modules and the pick list
Another method is to place all code in a hidden module and use the pick list to call
the procedures.
For more information, see Custom pick lists (MMC_MC1, MMC_MC2, MMC_MC3,
etc.) on page 48.

Example
sys.cfg

CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMove.sys" -Hidden -AllTask

mmc.cfg
MMC_CIRCLEMOVE_PALETTE = MMC_PALETTE:

-name "MoveCircle"

MMC_PALETTE_HEAD:

-name "Move Circle Palette" -type "MMC_CIRCLEMOVE_PALETTE"

Application manual - RobotWare Add-Ins 63
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.8 Hiding RAPID content

Continued

2.9 Optional settings for RAPID arguments (RAPID meta data)

Overview
It is possible to specify certain optional settings for arguments in RAPID instructions.
For instance it is possible to define if certain arguments shall be hidden when
viewing the RAPID program on the FlexPendant.
The optional settings are specified in an .xml file.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" show="true" showeditor="false" />

</Instruction>

</Edit>

</Rapid>

Tip

Use the template file named rapid_edit_rules.xml located in the following directory
in the RobotWare package folder:
...\RobotPackages\RobotWare_RPK_<version>\utility\Template\RAPIDOptional
Arguments\
Navigate to the RobotWare installation folder from the RobotStudio Add-Ins tab,
by right-clicking on the installed RobotWare version in the Add-Ins browser and
selecting Open Package Folder.

Name and location of the .xml file
The .xml file shall be registered using the setup script (see register on page 28) or
should be named rapid_edit_rules.xml and installed in the $(HOME) directory of
the controller.

Continues on next page
64 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9 Optional settings for RAPID arguments (RAPID meta data)

2.9.1 Hiding arguments in programs

Overview
It is possible to hide any of the arguments listed when displaying a programmed
RAPID instruction in the Program Editor and the Production Window on the
FlexPendant.
Which arguments to be shown in program windows is specified in the .xml file
using the showeditor attribute. The default value is that arguments shall be
shown.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" showeditor="true" />

<Argument name="Arg2" showeditor="false" />

</Instruction>

</Edit>

</Rapid>

Example
This is an example of an .xml file specifying which optional arguments to show for
MoveJ.

<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="MoveJ">

<Argument name="Conc" showeditor="true" />

<Argument name="ID" showeditor="true" />

<Argument name="V" showeditor="true" />

<Argument name="T" showeditor="false" />

<Argument name="Z" showeditor="false" />

<Argument name="Inpos" showeditor="false" />

<Argument name="WObj" showeditor="true" />

<Argument name="TLoad" showeditor="false" />

</Instruction>

</Edit>

</Rapid>

Continues on next page
Application manual - RobotWare Add-Ins 65
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9.1 Hiding arguments in programs

The result will be that only the arguments Conc, ID, V and WObj will be shown in
the program windows on the FlexPendant for the instruction MoveJ.

Note

Hiding an argument has priority over other functions such as selection of
argument when adding an instruction, see Highlight argument
(MMC_SELECT_PARAM) on page 54, or additional optional argument in pick
lists, see Pick list titles (MMC_PALETTE_HEAD) on page 48. For the latter case
the argument will be added, but it will not be shown.

66 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9.1 Hiding arguments in programs
Continued

2.9.2 Hiding optional argument when changing selected instruction

Overview
It is possible to hide any of the optional arguments listed when a RAPID instruction
is changed from the FlexPendant.
Which optional arguments to be shown on the FlexPendant is specified in the .xml
file using the show-attribute. The default value is that arguments shall be shown.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" show="true" />

<Argument name="Arg2" show="false" />

</Instruction>

</Edit>

</Rapid>

Example
This is an example of an .xml file specifying which optional arguments to show for
MoveJ.

<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="MoveJ">

<Argument name="Conc" show="true" />

<Argument name="ID" show="true" />

<Argument name="V" show="true" />

<Argument name="T" show="false" />

<Argument name="Z" show="false" />

<Argument name="Inpos" show="false" />

<Argument name="WObj" show="true" />

</Instruction>

</Edit>

</Rapid>

The result will be that only the optional arguments Conc, ID, V, and WObj will be
shown when changing the instruction on the FlexPendant for the instruction MoveJ.

Usage

Commentshoweditorshow

Default, same as True, True<not defined><not defined>

Shown everywhere in FPTrueTrue

Hidden in Program Editor and Production WindowFalseTrue

Continues on next page
Application manual - RobotWare Add-Ins 67
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9.2 Hiding optional argument when changing selected instruction

Commentshoweditorshow

Hidden in Argument Window, but shown in Program
Editor and Production Window.

TrueFalse

Users will not be able to program arguments having
this combination, thus it is unlikely that users will be
exposed to this combination. Which means that in
practice this is more like False/False.

Totally hidden, cannot be edited by Program EditorFalseFalse

68 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9.2 Hiding optional argument when changing selected instruction
Continued

2.9.3 Argument filter

Overview
It is possible to filter the data that is shown as arguments listed on the FlexPendant
and in RobotStudio.
The filter for a specific parameter is specified in the .xml file using the
filter-attribute. The default value is that no filter is used.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" filter="PLC_do_.*" />

</Instruction>

</Edit>

</Rapid>

In the example above only data with a name starting with "PLC_do_" will be matched
and shown for the parameter "Arg1" in the instruction "Instr1".

Regular expressions
The regular expressions are a powerful mechanism when it comes to matching a
multitude of names with a single expression.
In a regular expression all alphanumeric characters match, for example the
expression "abc" will match the sequence "abc". Regular expressions are case
sensitive. Most other characters also match, but a small set is known as the
meta-characters. These are:

MeaningExpression

Marks the beginning of the name being matched. Default.^

Marks the end of the name being matched. Default.$

Any single character..

Any character in the non-empty set s, where s is a sequence of
characters. Ranges may be specified as c-c.

[s]

Any character not in the set s.[^s]

Zero or more occurrences of the regular expression r.r*

One or more occurrences of the regular expression r.r+

Zero or one occurrence of the regular expression r.r?

The regular expression r. Used to separate a regular expression
from another.

(r)

The regular expression r or r'.r | r'

Continues on next page
Application manual - RobotWare Add-Ins 69
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9.3 Argument filter

Examples
Some examples:

• The expression "MoveL" (or "^MoveL$") would match the name "MoveL",
and nothing else.

• The expression "Move.*" would match "MoveL", "MoveC", "MoveCDO" etc.
• The expression ".*Move.*" would match the names "MyMove", "MoveL",

"MoveC" , "MoveCDO" etc.
• The expressions "", ".*", or "^.*$", i.e. an empty string, matches anything.

70 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9.3 Argument filter
Continued

2.9.4 Argument value range

Overview
It is possible to define minimum and maximum allowed value when specifying a
numerical value for an argument. The value will be validated by the FlexPendant
and RobotStudio when entering such a value.
The minimum and maximum allowed values for a specific parameter is specified
in the .xml file using the minvalue and maxvalue attributes. The default value is
that no minimum and maximum values are used.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" minvalue="1" maxvalue="16" />

</Instruction>

</Edit>

</Rapid>

In the example above only values between 1 and 16 will be allowed when entering
a numerical value for the parameter "Arg1" in the instruction "Instr1".

Note

The check for valid numerical value will only be performed when entering a
numerical value as argument. No validation will be performed if for instance a
variable is used as argument.

Application manual - RobotWare Add-Ins 71
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.9.4 Argument value range

2.10 FlexPendant applications

Introduction
Customized FlexPendant applications can be included in the RobotWare Add-In,
simply by adding the compiled application assemblies and other resources to the
file structure. No additional configuration is needed.
For the application to be loaded properly the Add-In must also register itself using
the register -type option command in the install.cmd file, see register on
page 28.

Note

This section only describes the deployment of FlexPendant applications. For
information on creating FlexPendant applications, see the corresponding manual
for the software used to create the FlexPendant application.

File structure
When adding a FlexPendant application to the Add-In, the application assemblies
(.dll) and other resources (.jpg, .gif, .bmp) need to be placed in the tps folder in the
Add-In file structure, see File structure on page 18.

Localized FlexPendant application
If the FlexPendant application is localized, i.e. has support for multiple languages,
the language specific resources should be placed in tps folders under each
language code folder.
For example, english resource files should be placed in the folder \<option
name>\language\en\tps\.

72 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

2 RobotWare Add-In functionality
2.10 FlexPendant applications

3 RobotWare Add-In Packaging tool
3.1 Introduction

3.1.1 About the RobotWare Add-In Packaging tool

General
RobotWare Add-In Packaging tool (APT) is a Windows program that helps to pack
the add-in as a package that can be deployed to the robot controller via the
Installation Manager. The output of the RobotWare Add-In Packaging tool is a
product manifest file and a robot package file.
The tool helps you to:

• Re-package RobotWare 5 additional options into RobotWare 6 add-ins.
• Package new RobotWare 6 add-ins.
• Define how the end-user will see the add-in product in the Installation

Manager.
• Define one or more optional features and rules for how options can be

selected in the Installation Manager.
• Define dependencies between your add-in and other products (RobotWare

and other add-ins).
The RobotWare add-in and the RobotWare add-in license can then be used together
with RobotWare to create a RobotWare system using the Installation Manager in
RobotStudio.
For more information about the Installation Manager, see Operating
manual - RobotStudio.

Tip

See also the tutorials on using the RobotWare Add-In Packaging tool available
at ABB Library Download Center.

Open and licensed add-ins
There are two major types of add-ins that can be created with the RobotWare
Add-In Packaging tool, open add-ins and licensed add-ins.
For open add-ins, the product manifest and the robot package file created will
contain everything required for the user to install the product unsigned.
For licensed add-ins, there is also a signing step involved in the packaging of the
add-ins, that will later allow you to generate licenses for the add-ins. The licensed
add-ins will require the user to add a license file in the Installation Manager to be
able to install the add-in.

Continues on next page
Application manual - RobotWare Add-Ins 73
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.1 About the RobotWare Add-In Packaging tool

https://library.abb.com

Installation procedure
Before installing the software make sure that the certificates are available, for more
information see Digital signing on page 78.

Action

Install the RobotWare Add-In Packaging tool.1

Install the certificate for signing add-ins using the RobotWare Add-In Packaging tool.
Use the password provided by ABB.

2

(A certificate is only needed when packaging licensed add-ins.)

Install your own publisher certificate.3
(A certificate is only needed when packaging licensed add-ins.)

Start the RobotWare Add-In Packaging tool.4

74 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.1 About the RobotWare Add-In Packaging tool
Continued

3.1.2 Optional features

Option identity
The option identity is what uniquely identifies an option in a product.
The option identity namespace must start with the product identity and also have
its own unique part. If the add-in has many options, the option identity part may
be built up of several parts, to group options logically.
For example: open.yourcompany.yourproduct.youroption
When you decide what scheme to use for the option identity names, keep in mind
that these option identity names are the identifiers that will be used in settings files
and license files (for licensed add-ins). If option identifiers are changed between
two releases of an add-in, compatibility with old settings files and license files will
be broken.

System options and robot options
In RobotWare 5, all options and additional options were system options. To be
able to have one configuration of equipment for one robot and another configuration
of equipment for another robot in a MultiMove system, it was necessary to make
special arrangements in the relkey.opt file.
In RobotWare 6 there is support for both system options and robot options. Typically
an option is classified as a robot option if its primary use is within the task of a
robot. For example, equipment that a robot is dressed with is an example of a robot
option. Or something that is connected to, or set up for, a specific robot in a
MultiMove system. A system option is global to the system, for example languages.

Dependencies
A dependency specified for an option in an add-in could be either of type AND
dependency, or of type OR dependency. This will define the dependency rule
between the options selected.
For example, dependencies like the following can be defined: Source option A is
dependent on both option B and C. Source option D is dependent on either A, B,
or C.

AND dependency
If an option does not work unless all of its dependent options are also being
installed, all these options are mandatory and should go into the AND dependency
list.
Example:

813-1 Optical Tracking

<AND dependent on>

624-1 Continuous Application Platform

628-1 Sensor Interface

OR dependency
If an option does not work unless one of its dependent options are also being
installed, all these options should go into the OR dependency list. In this case the
option will work if either of the options in the list are also selected for installation.

Continues on next page
Application manual - RobotWare Add-Ins 75
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.2 Optional features

For example. PROFIenergy requires that either PROFINET Controller/Device or
PROFINET Device is selected for installation:

963-1 PROFIenergy

<OR dependent on>

888-2 PROFINET Controller/Device

888-3 PROFINET Device

76 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.2 Optional features
Continued

3.1.3 Files of a packaged add-in

The product manifest file
The product manifest file (.rmf) is a container of the metadata for the add-in product.
It contains all product and option details.
Product details:

• Product name, product id, product version, version name, company name,
company url, copyright, and description.

• Any product dependencies to other products, such as RobotWare or add-ins
that the product may have.

Option details:
• Descriptions of all the options that are included in the add-in, such as option

names, option id's, option type (system or robot) and licensing restrictions,
• How the option structure should be displayed to the user in the Installation

Manager.
• Any dependencies to other options that the options in the add-in may have.
• Any conflicts to other options that the options in the add-in may have.

The purpose of the product manifest is to define how the end-user will see the
product in the Installation Manager. It will display the options in a structure to the
user and define the rules for how options can be selected and what other products
are required for the add-in to work.

The robot package file
The robot package file (.rpk) is an archive file that contains the actual contents of
the add-in, in a compressed form.
The folders and files of the add-in containing installation and application logics in
.cmd, .cfg, and .sys files.
This package will be transferred to the controller during installation and will be
unpacked on the controller where the .cmd files of the add-in will be executed to
install the add-in on the controller.

Application manual - RobotWare Add-Ins 77
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.3 Files of a packaged add-in

3.1.4 Signing with digital certificates

Digital signing
RobotWare 6 uses signing with digital certificates to ensure the integrity of published
products. When creating a RobotWare add-in that contains licensed options a
digital signature is mandatory.
To digitally sign a RobotWare add-in two different types of certificates are required,
a publisher certificate and a licensing certificate.
The publisher certificate signature has 2 main purposes:

• Identify the publisher of the add-in to the end user.
• Ensure the integrity of the published software. For example, any modifications

to the signed product manifest file will make the signature invalid and cause
the robot controller to refuse to install the add-in.

The publisher certificate is also commonly known as a code-signing certificate.
The add-in packaging tool will accept any x509 v3 certificate issued for this purpose.
ABB does not issue publisher certificates, it is the responsibility of the add-in
developer to obtain a suitable certificate for example by purchasing it from a trusted
certificate authority vendor or create their own self-signed certificate.
The licensing certificate is issued by ABB. This certificate is tied to the product id
you specify and grants you as the publisher the right to issue licenses for your
add-in. In addition to being used to sign your product the licensing certificate is
also used by the License Generator when creating license files for your RobotWare
add-in.

Timestamping
In addition to the signing certificates the RobotWare Add-In Packaging tool also
allows you to specify a timestamping server. Timestamping is the process of
applying a timestamp from a trusted source to your digital signature. This ensures
that the signature will still remain valid even if the signing certificate expires or is
revoked at a later date.
For example, without a timestamp the act of revoking a publisher or licensing
certificate would invalidate all products ever signed with these certificates whereas
with a timestamp products signed up to the revocation date will still remain valid.
Although not required, it is considered best practice and recommended to apply
a timestamp when signing your product.
The RobotWare Add-In Packaging tool supports timestamping services that follows
Microsoft Authenticode® standard. If you have purchased a publisher certificate
from a certificate authority they should be able to recommend a suitable
timestamping service.
As an alternative Symantec® operates a public timestamping service at the URL
http://timestamp.verisign.com/scripts/timstamp.dll. (Note that it is not possible to
browse to this URL.)

Continues on next page
78 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.4 Signing with digital certificates

Installation of digital certificates
All digital certificates (with the exception of self-signed certificates) are signed by
an issuer certificate. The issuer certificate in turn can have its own issuer, and so
on, until a self-signed root certificate is reached, this forms a so called certificate
chain.
For example the certificate chain for an ABB issued licensing certificate looks like
this:

ABB RobotWare Licensing Root

|

ABB RobotWare Licensing Issuing CA

|

Licensing for <your product>

The add-in packaging tool requires that all issuer certificates must be installed in
the Windows certificate store to be able to use the end user certificate for signing.
In the example above the ABB RobotWare Licensing Root and ABB RobotWare
Licensing Issuing CA certificates must be installed in order to be able to use the
Licensing for <your product> certificate.
In the case of publisher certificates, if you have purchased a certificate from a 3rd
party vendor the necessary certificate chain is usually already preinstalled in
Windows and no further installation is necessary.
In the case of licensing certificates the complete certificate chain is included in the
.pfx file delivered from ABB and the simplest way to install the issuer certificates
is therefore to install the .pfx file. This will also install the end user certificate which
can be uninstalled afterwards if desired.
To install the certificates locate the .pfx file in Windows Explorer, right click on the
file and select the Install PFX option, this will open up theCertificate ImportWizard.

Continues on next page
Application manual - RobotWare Add-Ins 79
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.4 Signing with digital certificates

Continued

Proceed through the wizard (you will need the pfx password provided by ABB)
until prompted to select a certificate store:

xx1500000935

By default the wizard will try to determine the appropriate store based on the type
of certificate. This would cause parts of the certificate chain to be installed as a
trusted root certificate which is not recommended in the case of licensing certificates
for security reasons. Instead it is recommended to change the default option and
place all the certificates in the personal store. This will not affect the signing
operations but will prevent the certificates from being trusted for operations for
which they are not intended.

Continues on next page
80 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.4 Signing with digital certificates
Continued

Viewing the installed certificates
It is possible to view and manipulate the contents of the Windows certificate store
through the certmgr snap-in to the Microsoft Management Console. To launch the
snap-in, execute the file cermgr.msc in the Windows system folder, usually
C:\Windows\system32\certmgr.msc.

xx1500000936

Application manual - RobotWare Add-Ins 81
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.4 Signing with digital certificates

Continued

3.1.5 Types of add-in packaging tools

Overview
The RobotWare Add-In Packaging tool is available in two forms; a GUI based tool
and a console based packaging tool. See User interface on page 83 and Building
an add-in from the console on page 99.

82 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.1.5 Types of add-in packaging tools

3.2 User interface

3.2.1 The home page

The home page
The home page of RobotWare Add-In Packaging tool is displayed when you select
New or Open from the File menu.

xx1400002260

The home page has three main views, Product Manifest, Files and Folders, and
Signing Certificates.
When all the information about the add-in has been entered, the add-in is built by
selecting Build Project from the Build menu.

Application manual - RobotWare Add-Ins 83
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.1 The home page

3.2.2 The File menu

The File menu
The File menu is used to manage the projects:

xx1800001606

The following table provides an overview of the options available in the File menu:

DescriptionName

Creates a new add-in project. The following options are available:
• Empty project: Select this option to create an add-in package

project from scratch.
• Project from an existing folder hierarchy: Select this option to

create an add-in using an existing 5.xx additional options.
For details about creating a project, see Creating and building an add-
in project on page 97.

New

For details about converting an additional option to an add-in, see Con-
verting an additional option to an add-in on page 98.

Opens an existing add-in project.

Note

The add-in project file extension is .rpkproj

Open

Closes the current active project.Close

Saves the current active project.Save

Continues on next page
84 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.2 The File menu

DescriptionName

Save the current active project to a different location on the file sys-
tem/network.

Note

The Save As operation saves all the project details in project files (.rp-
kproj, .rpkspecs and .manifest) into the newly selected location. Also a
copy of source files under the Files and folders tab will be created and
stored under the newly selected project folder.

Save As

Displays a list of 10 recently closed projects. You can choose to open a
recent project directly, instead of using the Open menu item.

Recent Projects

Exits the tool.Exit

Application manual - RobotWare Add-Ins 85
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.2 The File menu

Continued

3.2.3 The Product Manifest view

Introduction
The Product Manifest view is used to fill the product related information that goes
into the product manifest file. For example, product details such as Product Name,
Company Name and Product Version. The Product Manifest view is also used
to structure the add-in, and to set any dependencies or conflicts with the other
add-ins or RobotWare versions.

xx1400002260

Product Details tab
The following information is to be defined in the Product Details tab.

DescriptionField name

The name of the product.Product Name

Continues on next page
86 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view

DescriptionField name

The internal identifier that uniquely identifies the product.
• For licensed products the Product Id must start with one of

the namespace strings defined by the licensing certificate.
For more information, see Digital signing on page 78.

• For unlicensed products the Product Id must start with the
string open, for example:
open.yourcompany.yourproduct.

Note

The namespace must be unique and may not contain the id of an-
other product. If so, it will not be possible to select both products
when creating an RS system.
For example, if product A has id open.mycompany.A, then product
B cannot have id open.mycompany.A.B.
The id must be changed to open.mycompany.A_B or some other
unique name.

Product Id

The product version field is used to uniquely identify a specific build
of the product. This information is used by the Installation Manager
and other tools to determine the relation between different releases
of a product, that is, older, equal, or newer.

Product Version

The format of the product version can have maximum four fields:
<major version>.<minor version>.<build version>.<revision>

The version name field represents the product version as displayed
to the end user. It differs from the Product Version field in that it is
intended for display purposes only and is not restricted to a specific
format. It can, for example, contain identifiers such as "Beta" or
"Release Candidate" in addition to the version.

Version Name

As a comparison RobotWare 6.02.01 has a Product Version of
"6.02.1029.01" and a Version Name of "6.02.01.00".

Note

Add-Ins built with version 1.3 or older of the RobotWare Add-In
Packaging tool are displayed in the Installation Manager as a com-
bination of the Product Name and Product Version fields.
From version 1.4 the Version Name is used instead of Product
Version and it is therefore important that this field contains relevant
information.

The name of your company.Company Name

The website of your company.Company Url

Copyright information.Copyright

Short product description.Description

The Product Dependencies settings are used to set up dependencies to other
add-ins and RobotWare versions.
Click Add and then Import to add a dependent software. The following fields will
be filled automatically:

DescriptionField name

The internal identifier of the product.Identity

Continues on next page
Application manual - RobotWare Add-Ins 87
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view

Continued

DescriptionField name

The name of the product.Name

The installation target platform, for instance robot controller and/or
virtual controller.

Platform

The company name of the add-in publisher.Publisher

The minimum product version.MinVersion

The maximum product version (optional).MaxVersion

Product type. Always set to Add-In.Type

Options tab
The Options tab helps you to create options and to specify their details.
Click New to display the required fields for creating a new option.

xx1800001609

The information is to be defined in the following fields:

DescriptionField name

Displays all fields that must be completed for the creation of a new
option.

New

Removes the selected option.Remove

Validates the newly created option.Validate

Type the name of the option. This name is displayed in the Installa-
tion Manager in RobotStudio.

Display Name

Type the internal identifier of the option. This id is what uniquely
identifies an option in a product. The identifier must begin with the
the internal identifier of the product.

Identity

For example: open.yourcompany.yourproduct.youroption

For more information, see Optional features on page 75.

Continues on next page
88 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view
Continued

DescriptionField name

Select the type of the option:
• System - Options that are global for the system.
• Robot - Options that can be set per robot in the system. For

example, when using MultiMove where different robots may
have different equipment.

Type

Select the option attributes:
• Required license - The option requires a license.
• Is internal - The option is not shown in the Installation Man-

ager GUI.
• Is default selected - The option is selected by default in the

Installation Manager in RobotStudio.
• Is locked - The option cannot be deselected in Installation

Manager in RobotStudio.

Note

For licensed products, at least one option should have theRequired
license check box selected.

Attributes

The minimum number of robots in the system that can have the
option.

Note

This field is only valid for the option type Robot.

Min Instances

The maximum number of robots in the system that can have the
option. For example, when using several robots in a MultiMove
system.

Note

This field is only valid for the option type Robot.

Max Instances

Validate the option
Before leaving the Options tab, you must validate the options by clicking the
Validate button.
The following validation is performed:

• The option identity must always begin with product identity text as prefix.

Feature Data
For each option it is possible to define key values that can be retrieved from
install.cmd file during product installation. For more information see, getkey on
page 26.

DescriptionField name

Id of the key value.Id

Key value.Key

Continues on next page
Application manual - RobotWare Add-Ins 89
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view

Continued

Feature Data in MultiMove systems
By default, all the robots in a MultiMove system will get the same option settings.
When it is desired to have different settings for the different robots it is necessary
to provide more details to the robot options in the Feature Data settings.
Select a robot option in the option view, in the Feature Data section, add
{{instance}} to the Id or Key data of those robot options you would like to work
per robot in a MultiMove system, for example ROBOT{{instance}}COLOR.

xx1400002532

During installation, the Installation Manager will resolve {{instance}} to 1, 2, 3,
or 4, depending on which robot this setting was meant for. This will allow to check
for settings like ROBOT1COLOR, ROBOT2COLOR, ROBOT3COLOR, and ROBOT4COLOR

in the install.cmd files, for example in the following way:
getkey -id "ROBOT1COLOR" -var 10 -strvar $ANSWER -errlabel ERROR

goto -strvar $ANSWER

#ORANGE

config ...

#NEXT

#ERROR

Categories tab
The Categories tab is used to group and structure the options according to how
the add-in should be displayed in the Installation Manager.
It is not allowed to mix system options and robot options within the same category.
When both system options and robot options are included in the add-in, they must
be put into separate categories.

Installation ManagerCategories tab

xx1400002383

xx1400002382

Continues on next page
90 Application manual - RobotWare Add-Ins

3HAC051193-001 Revision: L
© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view
Continued

The following validation is performed:
• Only the same option type can be grouped together in a category. That is,

an option of the type System cannot be in the same category as an option
of type Robot.

Dependency tab
The Dependency tab is used to configure the dependencies between options.

xx1800001610

A dependency specified for an option in an add-in could be either of type AND
dependency options, or of type OR dependency options.
For more information, see Dependencies on page 75.

Note

Combining AND dependencies with OR dependencies in the same group is not
supported.

Use the following procedure to configure the dependencies between options:
1 Select a source from the Source list. The source option is the option that

should have a dependency to one or several other options.
2 Select an option in the list, and click Add to move the dependencies for that

option either to the AND dependency options list or to the OR dependency
options list.

Note

If you added a product dependency in the Product Details tab, the options
of that product will also be listed as options that the source option can
depend upon.

3 Click Add Group to define the dependency.
Continues on next page

Application manual - RobotWare Add-Ins 91
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view

Continued

The group is added to the Preview dependency groups section.

Note

When the dependency has been defined, it is listed in the dependency
group list. Use theEdit Group andRemoveGroup buttons to edit or remove
a dependency rule for an option dependency group.

Conflict tab
The Conflict tab is used to configure conflicts between the options.

xx1800001773

By configuring the conflicts, the conflicting options cannot be selected at the same
time in the Installation Manager.
Add the conflicting options one by one, and group them by clicking Add Group.
Create a conflict group for each set of conflicting options.

Note

Sometimes, options specified in an OR dependency list are also in conflict with
each other. In that case they should also be added both to the OR dependency
list and to a conflict group.

The Files and folders view
The Files and Folders view is used to create the robot package file.

Note

Verify that all the files and folders to be transferred to the controller during
installation are in place. Files and folders can be added and removed using the
user interface.

92 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view
Continued

Files and folders can be added to the project using the Files and Folders view.
Right-click at the folder level for the following options:

xx1800001774

DescriptionField name

Creates a new folder. The folder is added to the respective level on
the tree.

New Folder

Adds an existing folder on the file system to the project.Add Folder

Adds the individual files to the project.Add Files

Renames the selected folder.

Note

The root folder cannot be renamed.

Rename

Removes the selected folder.

Note

The root folder cannot be removed.

Remove

Application manual - RobotWare Add-Ins 93
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view

Continued

Right-click inside a folder for the following options:

xx1800001775

DescriptionField name

Creates a new folder under the selected folder. The folder is added
to the respective level on the tree.

New Folder

Adds an existing folder under the selected folder.Add Folder

Adds the individual files to the project.Add Files

Copies the full path of the selected file to the clipboard.Copy Full Path

Opens the selected folder location in Explorer.Open Containing
Folder

Opens the selected file in the software tool for the file.Open

Renames the selected file.Rename

Removes the selected file from the project.Remove

The name of the installation folder is a combination of the Product Name and the
Product Version, that was defined in the Product Details tab.

Note

The added files or folders are not physically copied to the project folder. The
RobotWare Add-In Packaging tool creates only a reference to the source files
or folders. Hence the added files and folders should be available at the original
source path.

When the project files or folders are modified in the original source location, there
will be impacts in the Files and Folders view while opening a saved project.

• if a file or folder is deleted from the source location, then there will be an
indication about the missing file or folder in the Files and Folders view.

94 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view
Continued

• if a file or folder is manually added to the source location, then no indication
is provided. You need to manually add the new file or folder in the Files and
Folders view of the RobotWare Add-In Packaging tool, if the newly added
file or folder is needed in the output package.

Files and folders for converted add-ins
After converting an additional option to an add-in, the Syskey directory can be
removed from the Files and Folders view, since it will no longer be used in the
RobotWare 6 installation. It was required for the import of the additional option,
since it enables the RobotWare Add-In Packaging tool to auto generate the option
details, but now the folder can be removed.
The relkey.txt file can also be removed, since it is not used anymore.

The Signing Certificate view
The Signing Certificate view is used to add the publisher and licensing certificates.
This information is mandatory for licensed options and is used during the signing
of the manifest and robot package files. For more information, see Digital signing
on page 78.

xx1800001776

Application manual - RobotWare Add-Ins 95
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view

Continued

DescriptionField nameSection

Select this option if the publisher certificate for digital
signing should be provided as .pfx files.

Note

Browse Publisher Certificate to select the certificate
from its stored location.

Select from filePublisher Certi-
ficate

Select this option if the publisher certificate for digital
signing should be installed on your PC from the Win-
dows certificate store.

Select fromWin-
dows certificate
store

Browse to select a certificate (.pfxfile) from its stored
location. The selected path is displayed.

Note

This field is used in combination with option Select
from file.

Publisher Certi-
ficate

The password for the publisher certificate when spe-
cified as a .pfx file.

Publisher Certi-
ficate Password

Select this option if the licensing certificate for digital
signing should be provided as .pfx files.

Note

Browse Licensing Certificate to select the certificate
from its stored location.

Select from fileLicensing Certi-
ficate

Select this option if the licensing certificate for digital
signing should be installed on your PC from the Win-
dows certificate store.

Select fromWin-
dows certificate
store

Browse to select a certificate (.pfxfile) from its stored
location. The selected path is displayed.

Note

This field is used in combination with option Select
from file.

Licensing Certi-
ficate

The password for the licensing certificate when spe-
cified as a .pfx file.

Licensing Certi-
ficate Password

Displays the URL to a timestamp server.TimestampServ-
er For more information, see Timestamping on page 78.

96 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.2.3 The Product Manifest view
Continued

3.3 Creating and building an add-in project

Procedure
Use the following procedure to create and package the add-in.

DescriptionActionStep

Create a new empty project by clicking New
and then Project from the File menu.

1

Or:
Select Project from an existing folder hier-
archy, then the tool will try to generate default
data for the add-in.

The Product Manifest view on page 86Enter all the information about the add-in in
the tabs of the product manifest view.

2

The Files and folders view on page 92Add all files and folders.3

The Signing Certificate view on page95For licensed options, add the publisher and
licensing certificates.

4

Build the add-in by selecting Build Project
from the Build menu.

5

License Generator on page 101Generate a license using the License Generat-
or.

6

Operating manual - RobotStudioVerify the add-in by building a system using
the Installation Manager in RobotStudio.

7

Application manual - RobotWare Add-Ins 97
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.3 Creating and building an add-in project

3.4 Converting an additional option to an add-in

Overview
This section describes how to package an existing RobotWare 5 additional option
as a RobotWare 6 add-in.
The RobotWare add-in Packaging tool will add information from the imported
additional option as a template add-in. It is necessary to go through all the option
details one by one to verify that the content is correct.

Limitations
Following are the limitations of RobotWare Add-In Packaging tool while converting
an additional option to an add-in:

• The RobotWare Add-In Packaging tool does not perform any migration of
the additional option to RobotWare 6, it is only a packaging tool. It is
mandatory to first migrate the additional option to RobotWare 6, using the
migration tool in RobotStudio.

• If the additional option has encrypted relkey.opt and .dat files, the files needs
to be decrypted. The RobotWare Add-In Packaging tool will not be able to
process any encrypted files.

Procedure
Use the following procedure to convert an additional option to an add-in.

SeeAction

Convert the project by clicking Project from
an existing folder hierarchy from the File
menu.

1

The Product Manifest view on page 86Verify the information about the add-in in the
tabs of the Product Manifest view.

2

The Files and folders view on page 92Verify that all files and folders are present in
the Files and folders view.

3

The Signing Certificate view on page95For licensed options, add the publisher and
licensing certificates.

4

Build the add-In by selecting Build Project
from the Build menu.

5

License Generator on page 101Generate a license using the License Generat-
or.

6

Operating manual - RobotStudioVerify the add-in by building a system using
the Installation Manager in RobotStudio.

7

98 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.4 Converting an additional option to an add-in

3.5 Building an add-in from the console

Overview
The console version of the RobotWare Add-In Packaging tool,
APTCommandLine.exe, is used to build an existing add-in project from the
command line.
The console version may be used as a batch command with relevant information
to generate the add-in.
Use the argument "-h" along with APTCommandline.exe to display all the available
arguments.

Note

Use : (colon) to separate an argument name and its value.

Note

Run APTCommandline.exe without any argument on the command line to view
the usage of arguments with examples.

Prerequisites
The add-in project must be created with all relevant references and desired files
and folders using the with the GUI based add-in packaging tool.
The console based add-in packaging tool uses this project to generate the add-in
in an unattended manner when provided with all the relevant information in the
batch command.

Description
The following table provides details of allowed add-in packaging tool command
line parameters switches:

DescriptionParameters switches

Project file name for APT RPKProj file.-projectfilename

Publisher signing certificate file.-pubcertfile

Password for the publisher certificate.-pubcertfilepassword

Licensing signing certificate file.-liccertfile

Password for the licensing certificate-liccertfilepassword

Thumbprint for the licensing certificate stored in the certi-
ficate store.

-liccertthumbprint

Thumbprint for the publisher certificate stored in the certi-
ficate store.

-pubcertthumbprint

Timestamping server URL for code signing.-timestampurl

Output folder where project output will be generated.-outputfolder

If this parameter's value is set to TRUE, an open add-in is
generated without considering the licensing.

-isopenaddin

Continues on next page
Application manual - RobotWare Add-Ins 99
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.5 Building an add-in from the console

For signing APT output files using Certificate files, possible options are:
• Publisher certificate files -pubcertfile along with the certificate file

password -pubcertfilepassword.
• Licensing certificate files -liccertfile along with the certificate file

password -liccertfilepassword.
For signing APT output files with thumbprint of certificate in the computer’s
certificate store, possible options are:

• Publisher thumbprint -pubcertthumbprint
• Licensing thumbprint -liccertthumbprint

Note

For publisher/licensing certificate signing, user can either use certificate file(s)
and password or thumbprint(s) but not both in a single batch instruction.

Note

It is possible to use file certificate file and password for publisher signing and
thumbprint for license signing.

100 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

3 RobotWare Add-In Packaging tool
3.5 Building an add-in from the console
Continued

4 License Generator
4.1 Introduction

General
The License Generator generates license files for RobotWare add-ins.

Installation procedure

Action

Install the License Generator.1

Install the certificate for the License Generator. Use the password provided by ABB.2

Start the License Generator.3

Application manual - RobotWare Add-Ins 101
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

4 License Generator
4.1 Introduction

4.2 The user interface

4.2.1 The Preferences window

Preferences
Before running the License Generator, the preferences in the Preferenceswindow
must be set up:

xx2000002041

DescriptionField name

The location of the product manifest files (*.rmf).Product Locations

The default location where the created licence files (*.rlf) should
be saved.

Default License Location

The authorization file, license file, (*.rlf) for the License Gener-
ator provided by ABB.

Authorization File

Install/use the certificate provided by ABB, same certificate as
for the RobotWare Add-In Packaging tool.

• Select from certificate store - Select certificates from
store if the certificates are already installed.

• Select from file - Select certificates from file (*.pfx) to
install the certificates.

Signing Certificate
(radio button)

Use the certificate password provided by ABB.Certificate Password

URL to a timestamp server.Timestamp Server
For more information, see Timestamping on page 78.

102 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

4 License Generator
4.2.1 The Preferences window

4.2.2 The main window

Overview of the main window
The main window is used to add all options that are to be included in the license
file. When all options are added, the license file is built by clicking Generate
License.

xx2000002040

DescriptionField name

Select the product manifest for which the license should be
created.

Select product

Select a license to import. The content of that license will be
copied.

License

Enter the serial number of the controller.Serial Number

Expand/collapse the options in the selected tab.Expand/collapse button.

License type Controller is selected.License Type

Clear all selected options.Clear All Selections
(button)

Automatically select dependant options.Auto resolve dependen-
cies (check box)

Generate the license file.Generate License
(button)

Tip

Double-click an option in the Preview Summary window to locate and highlight
the option in the tree-view.

Continues on next page
Application manual - RobotWare Add-Ins 103
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

4 License Generator
4.2.2 The main window

Tip

Use the search function to search for option names instead of browsing through
the tree-view.

104 Application manual - RobotWare Add-Ins
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

4 License Generator
4.2.2 The main window
Continued

4.3 Creating the license

Creating a new license

Note

Before creating a license it is necessary to set up the preferences in the
Preferences window, see The Preferences window on page 102.

Use this procedure to create a new license.

Action

Select a product manifest to create the license for in the Select Product field.1

Type in the serial number of the controller.2

Select all options in the tree-view.3

Generate the license file by clicking the Generate License button.4

Verify the license by building a system using the Installation Manager in RobotStudio.5

Import and modify a license
Before creating a license it is necessary to set up the preferences in thePreferences
window, see The Preferences window on page 102.
Use this procedure to import and modify a license.

Action

Select the product manifest you want to create the license for in the Select Product
field.

1

Select the license to import in the Order/License field.2
Click Open to import the license.

Type in the serial number of the controller.3

(Optional)4
Add or remove options in the tree-view.

Generate the license file by clicking the Generate License button.5

Verify the license by building a system using the Installation Manager.6

Viewing a licence file
The content of the license file is displayed in the Licence View window.
Use this procedure to view a license.

Action

Click View on the main menu.1

Browse to the folder where the license is located.2

Select the license file and click Open.3

The content of the license file is displayed.4

Application manual - RobotWare Add-Ins 105
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

4 License Generator
4.3 Creating the license

This page is intentionally left blank

Index
$, 22
#, 22

C
CAB_TASK_MODULES, 43
CIRCLEMOVE, 15
config, 22
copy, 24

D
default argument values, 48
delay, 24
delete, 25
direxist, 25

E
echo, 25
eio.cfg, 47
event log messages, 35
event log texts, 36
event log titles, 38
example, 15, 19

F
fileexist, 25
file structure, 17
find_replace, 25

G
getkey, 26
goto, 26

I
ifstr, 26
ifvc, 26
include, 27
install.cmd, 22, 32

L
load modules, 43

M
math_lib_set_mem_size, 27
mkdir, 27
mmc.cfg, 48
module, 33
MoveCircle, 33

N
NOSTEPIN, 33

O
onerror, 27

P
pick list, 48
print, 28

R
rapid_delete_palette, 28
rapid_delete_palette_instruction, 28
RAPID module, 33
RAPID rules, 48
register, 28

S
safety, 11
selections, 14
setenv, 30
setstr, 30
sys.cfg, 43
system module, 33

T
template files, 35
text, 30
timestamp, 31

V
validating .xml, 39
version.xml, 19

X
xml

validating, 39

Application manual - RobotWare Add-Ins 107
3HAC051193-001 Revision: L

© Copyright 2015-2023 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
51
19
3-
0
0
1,
R
ev

L,
en

© Copyright 2015-2023 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	Product documentation
	Safety
	1 Introduction
	1.1 About RobotWare Add-Ins
	What is an Add-In
	Using Add-Ins
	Unlicensed, open, Add-Ins
	Licensed Add-Ins
	Basic approach
	Selections within Add-Ins

	1.2 The CIRCLEMOVE example
	Introduction
	Description

	2 RobotWare Add-In functionality
	2.1 Required files and file structure
	Add-In files
	Event log message files
	File structure

	2.2 version.xml
	Introduction
	XML description
	Example file

	2.3 The install.cmd file
	2.3.1 Introduction
	Description

	2.3.2 Commands
	Overview
	$
	#
	config
	Erase unprotected contents
	Modify existing contents
	Exceptions

	copy
	delay
	delete
	direxist
	echo
	fileexist
	find_replace
	getkey
	goto
	ifstr
	ifvc
	include
	math_lib_set_mem_size
	mkdir
	onerror
	print
	rapid_delete_palette
	rapid_delete_palette_instruction
	register
	setenv
	System environment variables

	setstr
	text
	timestamp

	2.3.3 Examples of install.cmd files
	Example for CIRCLEMOVE

	2.4 RAPID modules
	Overview
	RAPID code example

	2.5 Custom event log messages
	2.5.1 About event log messages
	Overview
	Two .xml files
	Template files

	2.5.2 Event log texts
	Overview
	Explanation of the .xml file
	Example of the .xml file

	2.5.3 Event log titles
	Overview
	Explanation of the .xml file
	Example of the .xml file

	2.5.4 Validating event log .xml files
	Introduction
	Prerequisites

	2.6 System parameters related to add-in development
	2.6.1 About cfg files
	Overview
	Domain specifier
	Example

	Comments
	Type specifiers
	Instances and attributes
	Single or multiple rows
	Arrays
	Attribute of type Boolean

	Example of cfg file

	2.6.2 Topic Controller
	About the topic Controller
	Automatic loading of modules (CAB_TASK_MODULES)
	Example

	Modules included in a backup
	Modules not included in the backup
	Modules included in the backup

	Exclude files and directories at backup
	Example

	2.6.3 Topic I/O System
	About the topic I/O System
	Hiding I/O signals to the user
	Example

	2.6.4 Topic Man-machine Communication
	About the topic Man-machine Communication
	Pick list titles (MMC_PALETTE_HEAD)
	Example

	Custom pick lists (MMC_MC1, MMC_MC2, MMC_MC3, etc.)
	Example

	Default arguments (MMC_REAL_ROUTINE)
	Example

	Argument reuse (MMC_INST_NOT_REUSING_PREV_OPT_ARG)
	Example

	Argument Name Rules (MMC_REAL_PARAM)
	Example

	Argument Identifier Rules (MMC_COMMON_PARAM)
	Example

	Data Value Rules (MMC_REAL_DATATYPE)
	Example

	Highlight argument (MMC_SELECT_PARAM)
	Example

	Work objects (MMC_INSTR_WITH_WOBJ)
	Example

	Load objects (MMC_INSTR_WITH_TLOAD)
	Example

	Circular points (MMC_INSTR_WITH_CIR_POINT)
	Example

	Arguments not available for modify position (MMC_NO_MODPOS)
	Example

	Targets not available for modify position when additional axes offset is active (MMC_NO_DATA_MODPOS_IF_ACT_EOFFS)
	Example

	Optional argument for considering additional axes offset (MMC_USE_ACT_EOFFS_IN_MODPOS)
	Example

	Between points (MMC_NO_PC_MOVEMENT)
	Example

	Without between point (MMC_NO_PC_MOVEMENT_CLEAR_PATH)
	Example

	Service routines (MMC_SERV_ROUT_STRUCT)
	Example

	Change of motion mode (MMC_CHANGE_MOTION_MODE)
	Example

	2.6.5 Example cfg files
	Overview
	CircleMove_sys.cfg
	CircleMove_mmc.cfg

	2.7 Using text resources from files
	Overview
	Including language files from your add-in
	Example

	Unicode characters in UI and TP instructions in RAPID
	Example of how to install/register Unicode files
	Example of how to use/get Unicode in RAPID

	2.8 Hiding RAPID content
	Overview
	Split the code into two modules
	Example

	Use hidden modules and the pick list
	Example

	2.9 Optional settings for RAPID arguments (RAPID meta data)
	Overview
	XML format
	Name and location of the .xml file
	2.9.1 Hiding arguments in programs
	Overview
	XML format
	Example

	2.9.2 Hiding optional argument when changing selected instruction
	Overview
	XML format
	Example
	Usage

	2.9.3 Argument filter
	Overview
	XML format
	Regular expressions
	Examples

	2.9.4 Argument value range
	Overview
	XML format

	2.10 FlexPendant applications
	Introduction
	File structure
	Localized FlexPendant application

	3 RobotWare Add-In Packaging tool
	3.1 Introduction
	3.1.1 About the RobotWare Add-In Packaging tool
	General
	Open and licensed add-ins
	Installation procedure

	3.1.2 Optional features
	Option identity
	System options and robot options
	Dependencies
	AND dependency
	OR dependency

	3.1.3 Files of a packaged add-in
	The product manifest file
	The robot package file

	3.1.4 Signing with digital certificates
	Digital signing
	Timestamping
	Installation of digital certificates
	Viewing the installed certificates

	3.1.5 Types of add-in packaging tools
	Overview

	3.2 User interface
	3.2.1 The home page
	The home page

	3.2.2 The File menu
	The File menu

	3.2.3 The Product Manifest view
	Introduction
	Product Details tab
	Options tab
	Validate the option
	Feature Data
	Feature Data in MultiMove systems

	Categories tab
	Dependency tab
	Conflict tab

	The Files and folders view
	Files and folders for converted add-ins

	The Signing Certificate view

	3.3 Creating and building an add-in project
	Procedure

	3.4 Converting an additional option to an add-in
	Overview
	Limitations
	Procedure

	3.5 Building an add-in from the console
	Overview
	Prerequisites
	Description

	4 License Generator
	4.1 Introduction
	General
	Installation procedure

	4.2 The user interface
	4.2.1 The Preferences window
	Preferences

	4.2.2 The main window
	Overview of the main window

	4.3 Creating the license
	Creating a new license
	Import and modify a license
	Viewing a licence file

	Index

