
Application manual
Discrete application platform

Trace back information:
Workspace RW 6-0 version a3
Checked in 2014-11-11
Skribenta version 4.1.349

Application manual
Discrete application platform

Document ID: 3HAC050994-001
Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Additional copies of this manual may be obtained from ABB.
The original language for this publication is English. Any other languages that are
supplied have been translated from English.

© Copyright 2005-2014 ABB. All rights reserved.
ABB AB

Robotics Products
Se-721 68 Västerås

Sweden

Table of contents
71 Discrete application summary
81.1 Summary (DAP) ..

132 Programming discrete application
132.1 Programming summary ..
142.1.1 Designing a discrete application ...
242.1.2 Installation ...

293 RAPID Reference
293.1 RAPID Data types ...
293.1.1 dadescapp - Discrete application - application descriptor
323.1.2 dadescprc - Discrete application - process descriptor
343.1.3 daintdata - Discrete application - internal data ..
363.2 RAPID Instructions ..
363.2.1 DaActProc - Discrete application - activate process
373.2.2 DaDeactAllProc - Discrete application - deactivate all processes
383.2.3 DaDeactProc - Discrete application - deactivate process
393.2.4 DaDefExtSig - Discrete application - definition of the external signals
423.2.5 DaDefProcData - Discrete application - definition of the process data
443.2.6 DaDefProcSig - Discrete application - definition of the process signals
463.2.7 DaDefUserData - Discrete application - define user data
483.2.8 DaGetCurrData - Discrete application - get current data
513.2.9 DaProcML/MJ - Discrete Application - multiple processes
553.2.10 DaSetCurrData - Discrete application - set current data
573.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour
593.2.12 DaStartManAction - Discrete application - execute an application manually
613.2.13 DaGetAppDescr - Discrete application - get application descriptors
623.2.14 DaGetAppIndex - Discrete application - index of application array
643.2.15 DaGetNumOfProcs - Discrete application - get number of processes
653.2.16 DaGetNumOfRob - Discrete application - number of robots
663.2.17 DaGetPrcDescr - Discrete application - get process descriptor
683.3 RAPID Functions ...
683.3.1 DaGetFstTimeEvt -Discrete application - get the first time event
703.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system
713.3.3 DaGetMP - Discrete application - Get motion planner
733.3.4 DaGetRobotName - Discrete application - Get Robot name
753.3.5 DaGetTaskName - Discrete application - Get Task name

3HAC050994-001 Revision: - 5
© Copyright 2005-2014 ABB. All rights reserved.

Table of contents

This page is intentionally left blank

1 Discrete application summary
Overview

The option Discrete Application Platform (DAP) provides a software framework for
application software engineers.
The package is an optimal tool for fast and straight forward development by
providing a setup of specialized methods and datatypes in RAPID. It encapsulates
motion and process execution in one RAPID-instruction call (see EG1ML/EG1MJ).
The use of the package reduces application development costs and ensures a high
quality level and optimal use of the IRC5-system.
The Discrete application is tailored for applications similar to SpotWelding which
with the following environment:

• Discrete Application combines finepoint positioning with execution of up to
four parallel processes.

• The process is specialized for monitoring an external process device.
• Supports encapsulation of the process andmotion in shell-routines provided

to the end user.
The package is designed to have an internal kernel administrating the fast and
quality secured process sequence skeleton. It calls RAPID routines which the
application writer has to prepare to fulfill his specific task. It is up to the writer of
the application how much flexibility to leave to the end user.
It is possible to use the application in a MultiMove system with up to four robots
using the application.

Continues on next page
3HAC050994-001 Revision: - 7

© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary

1.1 Summary (DAP)

Discrete application features
The Discrete Application package contains the following features:

• Installation of one process instance of a Discrete Application per robot in the
system

• Installation of max four processes running independently in parallel in the
system

• Dynamic configuration of one RAPID task per process
• Dynamic installation of application modules
• Minimized RAPID-memory requirement
• Fast and accurate fine positioning
• Precalculation of the next position resulting in quick start after a process

completion
• Free naming of I/O-signals used by the kernel.
• Setting of program number for an external device
• Setting of external start signal
• Subscribing for external ready signal
• Subscribing for external stop signal
• Dual/single tool
• Time and sequence related events calling RAPID actions hooks
• Exception event RAPID hooks such as Process Hold / Release and Abort
• Automatic process retry
• Process simulation
• External process simulation
• Return to the process position
• Process tool counters
• Supports both program and start triggered external devices
• Process current data setting and retrieving
• Manual process execution
• Possible to start external process disregarding the in position event
• Individual process abort
• Cancelling of all processes at instruction abortion

Principles of discrete applications
The scope of the Discrete Application is limited to RAPID, I/O-configuration and
system configuration.

Continues on next page
8 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary
1.1 Summary (DAP)

Layers of a discrete application

DA kernel

-Motion

-Sequencer

-Process and application

administration

Application writer

Functions

Procedures

PERS

I/O

Hooks

Kernel

-Shell routine

-Hooks

-Init DA-kernel

-Datatype

-Task installation

User part

-Variables

-Functions/

Routines

Robot program

-User of application writer ’s interface

xx1400002241

Figure 1.1: Layers and interfaces

DAP is based on a separate handling of motion and processes. The motion acts
as trigger and synchronisation towards the processes. On its way towards the
programmed position, the motion task will trigger actions in the process tasks.
The triggers are activated by virtual digital signals. Their names are fix and
predefined. They are not multiplied by additional process installations.
Each process provides storage for three current data of anytype which are updated
with the begin of the process, i.e. it’s content is stable during process execution.
The data have different purposes:

• process data: information altering with each instruction
• process tool data: information connected to the four equipment, i.e. equipment

config data
• internal process data: information needed by the application shell.

Calls to hooks offer application writer’s tools to shape the application processes.
All the RAPID PERS data is used to customize the internal process sequence.
A program stop will only stop the motion task execution. The process and
supervision does by default carry on their tasks until they come to a well defined
process stop. A process hold may though very well be activated through the use
of the shelf routines.
The application may run independently of the motion if manually triggered.

Continues on next page
3HAC050994-001 Revision: - 9

© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary
1.1 Summary (DAP)

Continued

Supported equipment:
• Up to four external process device monitoring with parallel interface. The

device may be of two types - program schedule or start signal triggered. The
processmonitoring is interrupted by either process ready, timeout or external
stop.

• Any type of process tool which can be controlled through RAPID-code and
I/O interface is applicable.

Programming principles
Both the robot’s movement and the process control are supposed to be embedded
in one shell instruction of free format and name.
The application “EG1” is specified by (see the example code that follows with the
DAP option, RobotwareXX/options/dap):

• process data
• process tool data
• internal process data
• The system modules EG1BAS.SYS, EG1PRC.SYS and EG1TOL.SYS

containing RAPID shell routine, data types, data definitions and routines.
• System parameters: the kernel I/O configuration.

Discrete application instructions

DescriptionInstruction

Activate a process.DaActProc

Deactivate all installed process.DaDeactAllProc

Deactivate a specific process.DaDeactProc

Define I/O-signals interfacing the external device.DaDefExtSig

Define three data which shall be used as current data at process
start.

DaDefProcData

Define I/O-signals for the process execution information.DaDefProcSig

Define process user data which enables the application writer to
influence the framework behaviour.

DaDefUserData

Retrieve the content of the current data of the types defined by
DaDefProcData.

DaGetCurrData

Initiator of motion and process. Order time event calculation. Move
the TCP along a linear path and perform n processes.

DaProcML

Initiator of motion and process. Order time event calculation. Move
the TCP along a non-linear path and perform n processes.

DaProcMJ

Change the content of the current data of the types defined by
DaDefProcData.

DaSetCurrData

Deactivate one or more of the five user hooks: DaPrepPrcEG1,
DaTmEvt1EG1, DaTmEvt2EG1, DaTmEvt3EG1, DaStartEG1

DaSetupAppBehav

The application runs independently of the motion, i.e. a manual trigg
of the application.

DaStartManAction

Retrieve the application descriptors (one descriptor per robot).DaGetAppDescr

Continues on next page
10 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary
1.1 Summary (DAP)
Continued

DescriptionInstruction

Retrieve the number of precesses in the system.DaGetNumOfProcs

Retrieve the number of robots (application descriptors) in the system.DaGetNumOfRob

Retrieve the process descriptors.DaGetPrcDescr

Retrieve index of current application descriptor.DaGetAppIndex

Discrete application functions

DescriptionInstruction

Retrieve the first event time of all active processes in the current
application descriptor.

DaGetFstTimeEvt

Checks if any MultiMove option is installed.DaCheckMMSOpt

Retrieve the motion planner for current application descriptor.DaGetMP

Retrieve the robot name for current application descriptor.DaGetRobotName

Retrieve the name of the of the task that uses a specific application
descriptor.

DaGetRobotName

Discrete application data types

DescriptionData type

Application descriptor.dadescapp

Process descriptor.dadescprc

Type of required first element of eg1intdata.daintdata

Discrete application user hooks
The application name is added to the name of the hook. The following shows the
hooks for the example application "EG1".

DescriptionHook

Called before motion start.DaCalcEvtEG1

Motion start.DaPrepPrcEG1

First time event delta time T1 in advance of inpos.DaTmEvt1EG1

Second time event delta time T2 in advance of inpos.DaTmEvt2EG1

Third time event delta time T3 in advance of inpos.DaTmEvt3EG1

Inpos (or immediately after DaTmEvt3) before setting external start
signal.

DaStartEG1

Called after receiving the ready signal.DaEndPrcEG1

Called after receiving the external device stop signal.DaExtStopEG1

Called after timeout has passed without getting either ready or stop.DaTimoutEG1

Called at process hold.DaHoldPrcEG1

Called at process release after a hold.DaRlsPrcEG1

Called at process abortion.DaAbortPrcEG1

3HAC050994-001 Revision: - 11
© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary
1.1 Summary (DAP)

Continued

This page is intentionally left blank

2 Programming discrete application
2.1 Programming summary

Overview
The option Discrete Application supports creating new applications with a discrete
behaviour, see Discrete application summary on page 7. The writer of an
application will gain from the use of the framework in terms of:

• Development time
• Run time execution time
• RAPID-program memory need
• Similar look and feel between applications
• Tested kernel software
• MultiMove system adaption

Continues on next page
3HAC050994-001 Revision: - 13

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1 Programming summary

2.1.1 Designing a discrete application

About this section
This is a description of the required steps to follow when writing a discrete
application. You can find example files for designing a discrete application in the
folder options\dap in your system.

Modules
There are three modules required for each application named “EG1”:

• Base module: EG1BAS.SYS
• Process module: EG1PRC.SYS
• Tool module: EG1TOL.SYS

These three modules will run in different RAPID tasks. If we, for example, have
one application and two processes it will look like the following figure:

EG1BAS.SYS

EG1PRC.SYS

EG1TOL.SYS

Foreground
T_Rob1 Task

Background

task1 DA_PROC1

Background

task2 DA_PROC2

xx1400002242

Figure 2.1:

The figure above shows that module EG1BAS.SYS will be running in the T_ROB1
task. Module EG1PRC.SYS will be running in a background (process) task. There
can be as many process tasks started as the maximum number of processes
allowed. Today maximum number of processes are four. There will be at least one
process task attached to each robot that runs the application. In aMultiMove system
it is possible to have four robots connected to the same controller, and the four
processes can be distributed between the robots. If all of the robots in the system
run the application, each robot can only have one process task attached to it. But
if two robots run the application they can, for example, have two processes each.
It is only possible to have ONE discrete application in one MultiMove system, i.e.
all robots in the cell must run the same discrete application.
The figure above also shows that all installed RAPID-tasks will share code and
data declared in module EG1TOL.SYS.

Base module
The base module shall contain code and data which is accessed in the T_ROB1
task. It shall at least contain (see EG1BAS.SYS on page 20):

• init code for the framework
• application shell routine

Continues on next page
14 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application

• time event calculation hook
• a power on shelf routine named EG1ShPowerOn() where the initialization

of the application and processes is sited
• further shelf routines: The framework will call shelf routines at the appropriate

event given a name of the following convention:
- EG1ShStart
- EG1ShReStart
- EG1ShStop
- EG1ShQStop

Process module
The process module shall contain (see EG1PRC.SYS on page 21):

• the sequence hooks

Tool module
The tool module shall contain:

• common datatypes, notably process data, process tool data and internal
process data

• common PERS data
• common code

See also Installation on page 24.

Application name
The name of the application must be defined in eg1tol.sys as

CONST string EG1_APP_NAME := "EG1";

The string length of the name, in this case “EG1”, is limited to 5 characters.
There must also be a routine, DefAppName, in EG1bas.sys where the application
name is retrieved:

PROC DefAppName(INOUT string name)

name := EG1_app_name;

ENDPROC

The routine DefAppName is called when the system is starting up, so it is very
important that the routine exists in EG1bas.sys.

Process task
It is very important that the names of the process tasks begins with “DA_PROC”
(DA_PROC1, DA_PROC2...). Look in the example code file eg1sys.cfg.

Initialization
The following instructions shall be used in the EG1ShPowerOn-routine (in
eg1bas.sys) to initialize the application and it’s processes. Putting it in
EG1ShPowerOn ensures the installation of the application automatically at warm
start and a proper Power Failure support by the frame work.

Initialization of application and processes

returns an array containing the configured application descriptors.DaGetAppDescr

Continues on next page
3HAC050994-001 Revision: - 15

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application

Continued

returns an array containing the configured process descriptors.DaGetPrcDescr

returns how many processes that are configured in the system.DaGetNumOfProcs

returns howmany robots in the system that run a discrete application
(in a MultiMove system there can be more than one robot -> more
than one application descriptor).

DaGetNumOfRob

returns the index in the application descriptor that have the same
task number as current RAPID task.

EG1GetRobNo

Process transfer data definition
DaDefProcData defines three essential data for the application. Their content will
be stored by the framework as current data at each process start. The current data
remains stable during the complete process.

• process data
• process tool data
• internal process data

This data has to be defined for each process. They have to be defined as PERS
variables (see eg1tol.sys). The process data and process tool data shall be known
to the end user. The internal process data may serve the application writer such
as tomake data coming from the instruction parameters accessible in the sequence
hooks without showing them to the end user.
The data type shall be defined by the RECORD statement. It is the application writer’s
choice if it shall alterable to the end user. The internal process data is the only data
type with the restriction that the first element has to be of type daintdata and
named internal.

RECORD myprocintdat

!Required element, because it’s used by the kernel..;

daintdata internal;

ENDRECORD

Current data of these three data typesmay be extracted or changed in the sequence
hooks by DaGetCurrData and DaSetCurrData.

User variables
DaDefUserData defines data which enables the application writer to influence the
framework behaviour. The framework will access the persistent data directly, i.e.
a change of the content of such a user data is immediately recognized by the
framework. This kind of data is of installation type and it is not supposed to be
updated between or in the shell routine unless a NoConc-order was given. If a user
data is not installed the framework will use it’s default value.
Example:

PERS num my_max_prog_no := 63;

DaDefUserData proc_desc, my_max_prog_no, DA_PROG_MAX;

The following table brings up all available user data. For detailed description of
the palette of available user data, see Process sequence on page 19.

typeuser data selector

numDA_PROC_TIMEOUT

Continues on next page
16 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application
Continued

typeuser data selector

boolDA_SIMULATE_PROC

numDA_SIM_TIME

boolDA_AUTO_RESTART

numDA_PROG_MAX

numDA_PARITY

boolDA_ASYNC_START

numDA_START_TYPE

boolDA_FORCED_SEQ

External device connection signals
DaDefExtSig defines I/O-signals connected to an external device such as a weld
timer. If an optional signal is omitted, the framework will not use it. For further
details, see DaDefExtSig - Discrete application - definition of the external signals
on page 39.

Process signals
DaDefProcSig defines I/O-signals used by the framework such as information
about process status. If an optional signal is omitted, the framework will not use
it. See Instructions for further details.

Designing the shell-routine
The shell routine is the end users method to run the application with the motion.
The prototype-format of the shell-routine is free to be designed by the application
writer. Some guidelines should however be considered.
The shell routine shall encapsulate a call of the routine DaProcML/DaProcMJ. The
routine moves the robot to the assigned position and at the same time executes
the process sequence. The movement is by default concurrent.
Themodule where the shell routine is declared has to be defined in the task T_ROB1
as NOSTEPIN.
Required elements of the shell routine are:

• deactivation / activation of the processes (in aMultiMove system all processes
should not be deactivated)

• preparation of the transfer data
• running DaProcML
• error clause
• backward clause

A template of the shell routine and the time event calculation hook is described on
the following pages.

Continues on next page
3HAC050994-001 Revision: - 17

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application

Continued

Template of a master routine
Themaster shell routine should at least have the robtarget, speed data andwobjdata
in the parameter list. How the parameters are gathered and if they are optional or
not is decided by the application writer.
Observe that the descriptors, number of processes and so on have been fetched
in the Power On routine (see EG1BAS.SYS on page20 and Power On on page25).

PROC EG1ML (robtarget ToPoint \identno ID, speeddata Speed, num
EquipNo, PERS tooldata Tool \PERS wobjdata WObj \switch InPos)

VAR bool found := FALSE;

! Check if THIS task has a running process, if any deactivate

! it. In a MultiMove system every application descriptor

! uses different motion planners, "connected" processes use

! the same motion planner). See eg1sys_mms.cfg.

FOR i FROM 1 TO EG1_NOF_ROB DO

IF EG1_app_desc{rob_no}.MotPlan = EG1_prc_desc{i}.MotPlan

DaDeactProc EG1_prc_desc{i};

ENDFOR

! Activate the process/processes that are connected to THIS

! motion task. See eg1sys.cfg/eg1sys_mms.cfg.

FOR j FROM 1 TO EG1_NOF_PROC DO

IF EG1_app_desc{rob_no}.MotPlan = EG1_prc_desc{j}.MotPlan

AND EG1_prc_desc{j}.Active = FALSE THEN

found := TRUE;

! Save the equipment number for this process

! descrip tor

EG1_prc_desc{j}.EquipNo := EquipNo;

! Activate the first inactive process belonging to

! current application descriptor

DaActProc EG1_prc_desc{j};

ENDIF

ENDFOR

IF found = FALSE THEN

TPWrite "No process were configured for this task. Check the
configuration.";

Stop;

ELSE

IF (XX_err_no = XX_NO_ERR) THEN

! Move to the work position and start the processes

DaProcML ToPoint, Speed, Tool \WObj?WObj \InPos?InPos \ID?ID;

ELSE

DaProcML ToPoint, Speed, Tool \WObj:=WObj \InPos?InPos \ID?ID
\PreconError;

ENDIF

Continues on next page
18 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application
Continued

ENDIF

BACKWARD

! Perform backward actions

...;

! Move to the weld position.

MoveL ToPoint \ID?ID, Speed, FINE, Tool \WObj?WObj;

ERROR

! Perform error actions before raising the error

...;

RAISE;

ENDPROC

! Before DaProcML/DaProcMJ moves the TCP it will call the

! time event calculation hook DaCalcEvtXX. Here must all the

! event times be initiated for each process.

PROC DaCalcEvtXX (num EquipNo, VAR num EventTimes{*})

! Calculate the event times or extract them from the parameters

EventTimes{1} := ...;

EventTimes{2} := ...;

...

ENDPROC

Process sequence
The discrete application framework encapsulates a sequence execution in
connection to a fine point motion. It is typically used to monitor an external process
device. It takes care of:

• Setting the program number for the process controller device including parity
bit

• Starting the external device process by either a start signal or the program
number.

• Waiting for a ready, timeout or external stop signal after process start
• Resetting the start signal after receiving the ready/timeout/external stop

signal
• Calling application writer’s RAPID hooks.
• Logical sequence jumps (hook retry)
• Process restart after power failure
• Process canceling when moving the program pointer
• Interrupting and resuming the process at program stop/restart before the

main action has started.
Each active process has it’s own independent sequence run. All sequences are
started at the same time by the DaProcML/DaProcMJ-instruction. When all have
successfully finished their tasks this is reported back to the application master of
the framework which decides that the entire application has finished. The sequence
is synchronized with the motion and the event times. On request (see Sequence
parameters on page 20) the time delays may be omitted when the motion is no

Continues on next page
3HAC050994-001 Revision: - 19

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application

Continued

longer synchronizing, i.e. in case of a retry of the sequence when the end position
is already reached.

Sequence parameters
The sequence may be influenced by parameters controlled from the RAPID shell,
notably the user PERS data. The following list shows existing parameters, the
related user data selector and the default value if not defined by the user:

DefaultDescriptionUser data selectorParameter
function

1 sTime out for waiting for the process ready
signal. The time is started when the start
signal is set to the external device

DA_PROC_TIMEOUTProcess
timeout

No simula-
tion

Simulation of the process. If simulation is
TRUE the start signal is not set. After the
simulation time (defined by
DA_SIM_TIME) has passed on the ready
signal is set

DA_SIMULATE_PROCProcess sim-
ulation

1 sTime to simulate the processDA_SIM_TIMEProcess sim-
ulation time

0, i.e. no
auto restart

Number of times the complete process
should re-run after ready signal timeout
before stopping by calling the timeout
hook

DA_AUTO_RESTARTAutomatic re-
start

63Maximum allowed program number. The
value should match the length of the ex-
ternal program schedule. (The maximum
value that can be used here is 8388607,
e.g a 23 bit group.)

DA_PROG_MAXMaximum
program
number

NoneWeld schedule parity calculation. Possible
values: DA_NONE, DA_EVEN, DA_ODD

DA_PARITYProgrampar-
ity

Wait for in-
pos

TRUE value: The inpos event hook and
the following start of the process is not
waiting for inpos but immediately ex-
ecutes as soon as the last time event has
executed

DA_ASYNC_STARTAsynchron-
ous start

Start signal
initiator

The external device may initiate the pro-
cess by setting either the start signal
(=DA_START_TRIG) or the program num-
ber (=DA_PROG_TRIG)

DA_START_TYPEExternal
device start
type

No forced
sequence

The sequence delays are omitted if the
motion is no longer synchronizing, not-
ably after a retry

DA_FORCED_SEQSkipping
delays

Application writer’s hooks
The application writer’s hooks are the code entries where the application specific
code is defined. The name has to follow the below description where again “EG1”
is the application name (see Application name on page 15).

EG1BAS.SYS
The following hook shall be defined in eg1bas.sys.

(num EquipNo, VAR num EventTimes{*})DaCalcEvtEG1

Continues on next page
20 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application
Continued

Equipment number, which is an extra information to make it easier to
find data if stored in arrays

EquipNo

Time is an array where the time events 1 through 3 shall be returned
from the calculation. The order has to be: Time{1} >= Time{2} >= Time{3}
else this order will be forced by the framework.

EventTimes

EG1PRC.SYS
The following hooks shall be defined in eg1prc.sys. Each sequence hook is called
once for each process. The routine parameter format is the same for all procedures:

Process number, which is used to get the correct process descriptor in
the process descriptor array.

ProcNo

Contains the execution result and information about where to resume
the sequence. For possible values see Sequence control on page 22.

Status

Dummy parameters currently not used.Par1 and Par2

They are called in the following moments of the sequence:

(PERS num Status, num ProcNo, bool Par1, string Par2)DaPrepPrcEG1

Called at the start of the motion

(PERS num Status, num ProcNo, bool Par1, string Par2)DaTmEvt1EG1

Called at the first time event of the motion

(PERS num Status, num ProcNo, bool Par1, string Par2)DaTmEvt2EG1

Called at the second time event of the motion

(PERS num Status, num ProcNo, bool Par1, string Par2)DaTmEvt3EG1

Called at the third time event of the motion

(PERS num Status, num ProcNo, bool Par1, string Par2)DaStartEG1

Called before the start signal is set by the kernel. This event is either
executed at inposition (default) or immediately after the third time event.

(PERS num Status, num ProcNo, bool Par1, string Par2)DaEndPrcEG1

Called when receiving the process ready signal. This indicates a success-
ful end of the process and should be the last process event hook.

(PERS num Status, num ProcNo, bool Par1, string Par2)DaExtStopEG1

Called when receiving the process external stop signal

(PERS num Status, num ProcNo, bool Par1, string Par2)DaTimoutEG1

Called when process timeout has passed without receiving neither the
ready signal not the stop signal.

(PERS num Status, num ProcNo, bool Par1, string Par2)DaHoldPrcEG1

Called when process hold signal is set. Trigger on positive flange

(PERS num Status, num ProcNo, bool Par1, string Par2)DaRlsPrcEG1

Called when process hold signal is reset after a hold. Trigger on negative
flange

(PERS num Status, num ProcNo, bool Par1, string Par2)DaAbortPrcEG1

Called when process abort signal is set. Trigger on positive flange

Continues on next page
3HAC050994-001 Revision: - 21

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application

Continued

MOTION

T1

T2

T3

DAUSSTART

DaStartEG1()

Reset

start

DAUSEND

DaEndPrcEG1()

START SIGNAL

READY SIGNAL

DAP END

Cleanup

Release

MOC

Hold MOC

Set Start

PROCESS CYCLE

DAUSPREP

DaPrepPrcEG1()

DAUSEVT3

DaTmEvt3EG1()

IN PROGRESS SIGNAL

EXTERNAL PROCESS CYCLE

Set progno

Data

transfer

Kernel actions

User hooks

DAUSEVT2

DaTmEvt2EG1()

DAUSEVT1

DaTmEvt1EG1()

xx1400002243

Figure 2.2: Example: Successful application sequence

Sequence control
The framework allows the user hooks to influence where to resume the sequence
through the status parameter. The following values are possible:

• DAOK

• DACANCEL

• DAUSPREP/DAUSEVT1/DAUSEVT2/DAUSEVT3/DAUSSTART/DAUSEND offers
the possibility to redo part of the sequence by entering the assigned hook.
Only backwards jumps are allowed, otherwise the return value is treated as
DAOK.

Sequence influence
The sequence may be influenced by the instruction DaSetupAppBehav. The
instruction can affect five of the eleven sequence hooks - DaPrepPrcEG1,
DaTmEvt1EG1, DaTmEvt2EG1, DaTmEvt3EG1 and DaStartEG1. With help of
the instruction DaSetupAppBehav these five sequence hooks can be deactivated,
and thereby time will be saved. The instruction must be called before calling the
routine DaProcML/DaProcMJ. For further details, seeDaSetupAppBehav - Discrete
application - sets up application behaviour on page 57.

Continues on next page
22 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application
Continued

Exceptions

Process abortion
Each process may be aborted individually. The process is then reported back to
the application master as finished. A process abortion kills any ongoing
RAPID-execution even if for instance waiting for a user interaction in a TPReadFK.
DaAbortPrcEG1 is called as last user hook.

• Initiator for a process abortion may be:
• Process abort signal
• User hook returned DACANCEL
• Application abortion

Application abortion
The entire process may be aborted. That may be the case when the user-PP is
moved, i.e. the shell routine is abandoned. It will cause a process abortion for each
active process. See above.
Initiator of an application abortion is:

• Application shell routine was given up by moving the PP

Process hold
A process hold interrupts a running hook and calls DaHoldPrcEG1. If a hold occurs
while the start signal is on the start signal is reset.
Initiator of a process hold is:

• Program execution stop before the start of the main action.
• Process hold signal goes high. This may be done in a stop/qstop-shelf if

desired.

Process release
A process release is always run after a process hold if the process was not aborted
during the hold. DaRlsPrcEG1 is called and the interrupted event hook is resumed.
If the hold occurred while the start signal was high the sequence is resumed where
the start signal was set and timeout, stop and ready is subscribed for.
Initiator of a process release is:

• Program execution is restarted.
• Process hold signal goes low which may be done in a restart-shelf if desired.

Utilities

Returns the descriptor of an in-
stalled application.

DaGetAppDescr

Returns the descriptor of an in-
stalled process.

DaGetProcDescr

The data is valid from the moment
DaProcML/DaProcMJ was called
and the motion has started i.e. when
the earlier process has finished and
released the motion.

Retrieves currently valid data
from the framework.

DaGetCurrData

The same time span as described
for DaGetCurrData.

changes the currently used data.DaSetCurrData

3HAC050994-001 Revision: - 23
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.1 Designing a discrete application

Continued

2.1.2 Installation

I/O configuration
The I/O-configuration contains required internal virtual signals which are only
known and used by the discrete application framework.

System Parameters

eio

dapeio_i.cfg

xx1400002244

Figure 2.3: The parameter configuration

RAPID system configuration
The installation of the discrete application is done when the system is starting up.

Task installation
After a cold start in a single system there will be two tasks installed. One motion
task, T_ROB1, that will run the application, and one background task, DA_PROC1,
that will run one process. Observe that if only the DAP option is included in the
system (and no Spot option), the option MultiTasking also must be included. Then
it is possible to add process task via RobotStudio.
If there is a MultiMove system with for example four motion robots in the system,
the motion tasks will be named T_ROB1... T_ROB4, but there will still only be
two process tasks, DA_PROC1 and DA_PROC2, installed from start (if you use the
example file eg1sys.cfg). If more robots will run the discrete application, process
tasks must be added via RobotStudio. The option MultiTasking is not needed
because it is included in the MultiMove option.

Task addition
In RobotStudio it is possible to look at and configure the tasks. Under the tab
Configuration/Controller/Mechanical Unit Groups (only if you have a MultiMove
system) you can see how the configuration is done. It is also possible to change
the configuration. New background tasks (not motion tasks) will be added in
Configuration/Controller/Tasks. If the configuration file (sys.cfg) is saved an
example how part of it will look like will be like this:

CAB_TASKS:

-Name "T_ROB1" -Type "NORMAL" -UseMechanicalUnitGroup "rob1"
-MotionTask

-Name "T_ROB2" -Type "NORMAL" -UseMechanicalUnitGroup "rob2"
-MotionTask

-Name "DA_PROC1" -TrustLevel "SysHalt" -UseMechanicalUnitGroup
"rob1"

-Name "DA_PROC2" -TrustLevel "SysHalt" -UseMechanicalUnitGroup
"rob1"

Continues on next page
24 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.2 Installation

-Name "DA_PROC3" -TrustLevel "SysHalt" -UseMechanicalUnitGroup
"rob2"

MECHANICAL_UNIT_GROUP:

-Name "rob1" -Robot "ROB_1" -UseMotionPlanner "motion_planner_1"

-Name "rob2" -Robot "ROB_2" -UseMotionPlanner "motion_planner_2"

The example above shows two motion task “connected” to process tasks via the
mechanical unit group. Motion task T_ROB1will use two processes and task T_ROB2
will use one process. Look also in the example code for DAP,
eg1sys.cfg/eg1sys_mms.cfg.

Power On
The instruction, DaShelfPowerOn, is called by every task that will run the discrete
application, when the system is starting up. It is not possible to look into the code
because it is cryptated, but what happens is that the application and processes
are set up. The first motion task that calls DaShelfPowerOn does the initiation. A
check is done how many motion task in the system that will work as discrete
application robots, and how many processes every application robot will use. In a
single system there is only one motion task, but in a MultiMove system there can
be up to four robots that can act as application robots. A process is “connected”
to a motion task through the MECHANICAL_UNIT_GROUP. In a single system all
tasks use the samemechanical unit group, but in a MultiMove system every motion
task uses different mechanical unit groups. It is through the “connection” motion
task/process task the system can discern which motion task will act as a discrete
application task. The process task MUST be named like DA_PROC1, DA_PROC2...
because that is how the system recognize the processes.
A maximum number of four discrete application descriptors may be installed for
the hole system, i.e. there can be four robots that run a discrete application. It is
only possible to have one discrete application configured in the system. It can be
up to four processes installed, divided between the robots.

Template of a power on routine
The routine is called by all application tasks when the system is starting up. A
check is done which of the application descriptors that corresponds to this task.
The application descriptors are saved in an array and the index of the descriptor
is saved in a persistent variable and is later on used in other routines, among
others, EG1ML.

PROC EG1ShPowerOn()

! Init EG1 PERS

! Get process descriptors

DaGetPrcDescr EG1_prc_desc;

! Get application descriptor

DaGetAppDescr EG1_app_desc;

! Get number of processes

Continues on next page
3HAC050994-001 Revision: - 25

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.2 Installation

Continued

DaGetNumOfProcs EG1_NOF_PROC;

! Get number of robots (In a MultiMove system there can

! be more than one robot -> more than one application

! descriptor)

DaGetAppIndex rob_no;

! Define the process data

FOR j FROM 1 TO EG1_NOF_PROC DO

DaDefProcData EG1_prc_desc{j}, EG1_prc_data{j},

EG1_tool_data{j}, EG1_int_data{j};

! Define the user data

DaDefUserData EG1_prc_desc{j}, EG1_prc_time_out,

DA_PROC_TIMEOUT;

TEST j

CASE 1:

! Define the external signals

DaDefExtSig EG1_prc_desc{1}, doStart1, diReady1, goProgNo1;

! Define the process signals

DaDefProcSig EG1_prc_desc{1}, doInProgress1, doProcFault1,
doExtFault1;

CASE 2:

....

ENDTEST

ENDFOR

ENDPROC

Module
The framework will allocate encoded modules with predefined names in the tasks.
It will also allocate the application specific modules provided by the application
writer. Those three modules must follow the rules below:

• The three systemmodules (a base, process and tool module) must be loaded
into the directory HOME:/dap. Then make a warmstart.

• Name convention: EG1BAS.SYS, EG1PRC.SYS and EG1TOL.SYS where
"EG1" is the name of the application used in DaDefAppName (seeApplication
name on page 15).

Continues on next page
26 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.2 Installation
Continued

RAPID task and module setup example
The following description is in accordance to the example with the application
"EG1" in the initialization chapter. It shows one task that runs the application,
T_ROB1, and three processes connected to it, DA_PROC1, DA_PROC2 and DA_PROC3.

Program memory: "Shared"

System module

Types

Routines

Data

System module DATOOL

Data

Routines

xx1400002245

Figure 2.4: Module Allocation for Discrete application

Program memory: task 0 (T_ROB1)
Program

System module DABASE

Main module

Main
routine

Program data

System modules

Data

Routines

Routines

System module EG1BAS

Data

Routines

xx1400002246

Figure 2.5:

Program memory: DA_PROC1
System module DAPROC

Data

System module EG1PRC

Data

Routines

Main

 Routine Routine Routine

xx1400002247

Figure 2.6:

Continues on next page
3HAC050994-001 Revision: - 27

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.2 Installation

Continued

Program memory: DA_PROC2

System module EG1PRC

Data

Routines

System module DAPROC

Data Main
Routine

 Routine Routine Routine

xx1400002248

Figure 2.7:

Program memory: DA_PROC3

System module EG1PRC

Data

Routines

System module DAPROC

Data Main
Routine

 Routine Routine Routine

xx1400002249

Figure 2.8:

With the DAP option it follows a executable application and a framework of the
three systemmodules. There are six files connected to the executable application,
namely:

• EG1.PRG
• EG1BAS.SYS
• EG1PRC.SYS
• EG1TOL.SYS
• EG1_EIO.CFG
• READ_EG1.TXT

Before running this application read the fileREAD_EG1.TXT. The name of the three
system modules is as follows:

• EG1BAS.SYS
• EG1PRC.SYS
• EG1TOL.SYS

28 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application
2.1.2 Installation
Continued

3 RAPID Reference
3.1 RAPID Data types

3.1.1 dadescapp - Discrete application - application descriptor

Description
dadescapp (Discrete Application - Application descriptor) is used to describe an
application within the discrete application.

Overview
Data of the type dadescapp contains a reference to an installed application within
the discrete application. It is linked during the power on sequence of the system,
where the instruction DaShelfPowerOn is called. Every motion task that is
configured (i.e. has a process “connected”) to run a discrete application will create
an instance of an application descriptor.
In a MultiMove system it is possible to have a maximum of four instances of an
application descriptor, i.e. only four robots can run run a discrete application.

Example
! The new application name. The string length of the name

! is limited to 5 characters.

CONST string EG1_APP_NAME := "EG1";

PERS string DaAppName := "";

! Number of possible robots running an application. In a MultiMove

! system there will be possible to have four intances of an

! application, in a single system one.

CONST num EG1_MAX_NOF_ROB := 4;

! Application descriptor

PERS dadescapp EG1_app_desc{EG1_MAX_NOF_ROB} := [[0, 0, 0, 0, 0,
0, 0, ""], ...];

...

! Get application descriptor

DaGetAppDescr EG1_app_desc;

This data can then be used as shown in the example below.
IF EG1_app_desc{1}.taskno = 1 THEN

...;

ENDIF

A new application EG1 will be installed and the descriptors of this new application
will be the allocated data EG1_app_desc.
The declarations above must exist in the file eg1tol.sys. And it is very important
that the instruction DefAppName exist in EG1bas.sys, so the system will know the
name of the application.

Continues on next page
3HAC050994-001 Revision: - 29

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.1.1 dadescapp - Discrete application - application descriptor

The application name is declared by the variable EG1_APP_NAME and is retrieved
during the start up sequence, by the routine DefAppName. A new application EG1
will be installed and instances of the descriptor of this new application will be the
allocated data EG1_app_desc. If it is a MultiMove system, an instance per motion
task that runs the discrete application will be installed.
When the system is starting up the application descriptors are installed and can
be “picked up” with the instruction DaGetAppDesr.

Components

ipm

ipm number
Data type: num
Internal use

id

identification
Data type: num
Internal use

taskno

task number
Data type: num
The task running this instance of application

motplan

motion planner
Data type: num
The motion planner this instance of appliction is using

noofprocs

number of processes
Data type: num
Number of processes this instance of application has “connected”

dadamno

damaster number
Data type: num
Internal use

robotname

robot name
Data type: string
Name of the robot that runs this instance of the application

taskname

task name

Continues on next page
30 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.1.1 dadescapp - Discrete application - application descriptor
Continued

Data type: string
Name of the task that runs this instance of the application

Related information

SeeFor information about

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

Technical reference manual - RAPID overviewCharacteristics of non-value data
types Discrete application summary on page 7

3HAC050994-001 Revision: - 31
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.1.1 dadescapp - Discrete application - application descriptor

Continued

3.1.2 dadescprc - Discrete application - process descriptor

Description
dadescprc (Discrete Application - Process descriptor) is used to describe an
process within
the discrete application.

Overview
Data of the type dadescprc contains a reference to an installed process in an
already installed application within the discrete application.
It is linked to a new process during the power on sequence of the system. For
every process task (DA_PROCX) that is configured in the system, there will be a
new process.
In a MultiMove system, it is possible to have a maximum of four instances of
process descriptors, i.e. only four equipments can be active in the system at the
same time (every equipment “uses” one process descriptor).

Example
! Possible number of processes in the system.

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS} := [[0, 0, 0, 0, 0, 0, 0,
0, FALSE], ...];

...

! Get process descriptors

DaGetPrcDescr proc_desc;

This data can then be used as shown in the example below.
IF proc_desc{1}.taskno = 1 THEN

...;

ENDIF

When the system is starting up, the processes are installed. The process descriptors
can be “picked up” with the instruction DaGetPrcDescr and will be the allocated
data proc_desc.

Components

ipm

ipm number
Data type: num
Internal use

id

identification
Data type: num

Continues on next page
32 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.1.2 dadescprc - Discrete application - process descriptor

Internal use

taskno

task number
Data type: num
Number of the task that uses this process descriptor.

motplan

motion planner
Data type: num
Number of the motion planner that uses this process descriptor.

procno

process number
Data type: num
Number of processes “connected” to currrent application descriptor. Up to four
processes can be used in a system, divided between the application descriptors.

equipno

equipment number
Data type: num
Number of the equipment

daprocno

process number
Data type: num
Number of process, i.e if the process name is “DA_PROC1”, then daprocno = 1

active

active
Data type: bool
Tells if the process is active or not

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

Technical reference manual - RAPID overviewCharacteristics of non-value data
types Discrete application summary on page 7

3HAC050994-001 Revision: - 33
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.1.2 dadescprc - Discrete application - process descriptor

Continued

3.1.3 daintdata - Discrete application - internal data

Description
daintdata (Discrete Application - Internal data) is used to define internal data
within the discrete application.

Overview
Discrete application - Internal data is a data type used for internal data transfer
between the developer of the application and the discrete application framework.
The data is setup before process start and it shall be used in the user hooks to
gain information from the current process.

Components

prog_no

Program Number
Data type: num
The program number for the external device.

noconc

No Concurreny
Data type: bool
No concurrency information for the process execution. If this flag is set to TRUE
the process will be executed in no concurrency mode.

equip_act

Equipment Active
Data type: bool
Process belong to the assigned equipment is active if this flag is set to TRUE.

start_no

Start Number
Data type: num
The subprocess (e.g. dual tool) number information to the external device.
1: Start1 Ready1 -> Subprocess1
2: Start2 Ready2 -> Subprocess2
12: Start1 Ready1 Start2 Ready2 -> Subprocess1 first, Subprocess2 second
21: Start2 Ready2 Start1 Ready1 -> Subprocess2 first, Subprocess1 second

act_start_no

Active Start Number
Data type: num
The active start number information (see start_no), the value is set by the discrete
application framework and shall not be changed.

Continues on next page
34 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.1.3 daintdata - Discrete application - internal data

counter1

Data type: num
The counter of the execution for the subprocess 1.

counter2

Data type: num
The counter of the execution for the subprocess 2.

prog_name

Program Name
Data type: string
The program name for the external device. This component is not yet implemented.
When daintdata is initiated then give this component the value of an empty string.

Example
! Definition of the intdata

RECORD swintdata

daintdata internal;

num component2;

...;

ENDRECORD

PERS swintdata internal_data1 := [[1, FALSE, TRUE, 1, 1, 0, 0,
""], 1, ...];

...

! Setup the internal data

internal_data1.internal.prog_no := 1;

internal_data1.internal.noconc := FALSE;

internal_data1.internal.euip_act := TRUE;

internal_data1.internal.start_no := 1;

internal_data1.internal.act_start_no := 1;

internal_data1.internal.counter1 := 0;

internal_data1.internal.counter2 := 0;

internal_data1.internal.prog_name := "";

...

Structure
<dataobject of daintdata>

<prog_no of num>

<noconc of bool>

<equip_act of bool>

<start_no of num>

<act_start_no of num>

<counter1 of num>

<counter2 of num>

<prog_name of string>

3HAC050994-001 Revision: - 35
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.1.3 daintdata - Discrete application - internal data

Continued

3.2 RAPID Instructions

3.2.1 DaActProc - Discrete application - activate process

Description
DaActProc is used to activate a connected process in the application within the
discrete application framework.

Examples
! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Activate process

DaActProc proc_desc{1};

The first process will be activated after the DaActProc... execution.

Arguments
DaActProc ProcDesc

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process to be activated.

Limitations
The number of active processes at the same time is limited to 4.
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaActProc [ProcDesc’:=’] < persistent array {*} (PERS) of

dadescprc > ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

36 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.1 DaActProc - Discrete application - activate process

3.2.2 DaDeactAllProc - Discrete application - deactivate all processes

Description
DaDeactAllProc is used to deactivate all active processes in the application
within the discrete application framework.

Examples
! Possible number of processes in the system.

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Deactivate all processes

DaDeactAllProc;

All active processes will be deactivated after the DaDeactAllProc ... execution.

Limitations
When trying to deactivate all processes, be sure that a minimum of one process
is already active. Otherwise the program execution will result in a fatal RAPID user
error.

Syntax
DaDeactAllProc ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 37
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.2 DaDeactAllProc - Discrete application - deactivate all processes

3.2.3 DaDeactProc - Discrete application - deactivate process

Description
DaDeactProc is used to deactivate a connected process in the application within
the discrete application framework.

Examples
! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Activate process

DaDeactProc proc_desc{1};

The first process will be deactivated after the DaDeactProc... execution.

Arguments
DaDeactProc ProcDesc

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process to be deactivated.

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaDeactProc [ProcDesc’:=’] < persistent array {*} (PERS) of

dadescprc > ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

38 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.3 DaDeactProc - Discrete application - deactivate process

3.2.4 DaDefExtSig - Discrete application - definition of the external signals

Description
DaDefExtSig is used to define the external signals of the connected process
within the discrete application.

Examples
! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate the desriptor for the new processes

VAR dadescprc proc_desc{NOF_POSS_PROCS};

! The event times of the processes

VAR num evt_time_prc1{3} := [2.5, 1.8, 1.0];

VAR num evt_time_prc2{3} := [2.2, 1.7, 0.8]

! The first time event

VAR num first_time_event;

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Define the external signals for process one

DaDefExtSig proc_desc{1}, doStart1, diReady1, goProgNo1

The external signals will be defined as specified after DaDefExtSig ... execution.

Note

Those signals must be already configurated in the system.

Arguments
DaDefExtSig ProcDesc Start1 [\Start2] Ready1 [\Ready2] [\Reset]

[\Stop] ProgNo [\ProgParity]

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process.

Start1

Data type: signaldo
The start signal one of the connected process. This signal is used to start the
process of the external device. Start1 is set if the value of start_no and
act_start_no in daintdata is 1.

[\Start2]

Data type: signaldo

Continues on next page
3HAC050994-001 Revision: - 39

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.4 DaDefExtSig - Discrete application - definition of the external signals

The start signal two of the connected process (optional). If this signal is defined,
the optional argument Ready2must also be in use. The signal is used if start_no
or act_start_no in daintdata is 2. If this optional signal is not defined in the
instruction Start1 will be used.

Ready1

Data type: signaldi
The ready signal one of the connected process. This signal is used to subscribe
for the end of the external process. Ready1 is subscribed for if start_no or
act_start_no in daintdata is 1. When the signal is received the main action
ready hook is executed.

[\Ready2]

Data type: signaldi
The ready signal two of the connected process (optional). If this signal is defined,
the optional argument Start2must also be in use. The signal is used if start_no
or act_start_no in daintdata is 2. If this optional signal is not defined in the
instruction Ready1 will be used.

[\Reset]

Data type: signaldo
The reset signal of the connected process. The output is pulsed (10ms) after the
execution of the main action timeout or stop hook. If the signal is not defined, it
will not be used.

[\Stop]

Data type: signaldi
The stop signal of the connected process. This signal is used to subscribe for a
stop signal from the external device. When the signal is received, the main action
stop hook is executed. If the signal is not defined, it will not be used.

ProgNo

Program Number
Data type: signalgo
The program number signals of the connected process.

[\ProgParity]

Program Parity
Data type: signaldo
The program parity of the program number. The different parities are:

• None parity if this optional argument is omitted.
• Odd parity if this optional argument is in use and the output signal is 0.
• Even parity if this optional argument is in use and the output signal is 1.

Limitations
Make sure that the signals are configured. Otherwise the program execution will
result in a fatal RAPID user error.

Continues on next page
40 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.4 DaDefExtSig - Discrete application - definition of the external signals
Continued

Syntax
DaDefExtSig

[ProcDesc’:=’] < persistent array {*} (PERS) of dadescprc >
’,’

[Start1’:=’] < variable (VAR) of signaldo >

[’\’ Start2 ’:=’ < variable (VAR) of signaldo >] ‘,’

[Ready1’:=’] < variable (VAR) of signaldi >

[’\’ Ready2 ’:=’ < variable (VAR) of signaldi >]

[’\’ Reset’:=’ < variable (VAR) of signaldo >]

[’\’ Stop ’:=’ < variable (VAR) of signaldi >] ‘,’

[ProgNo’:=’] < variable (VAR) of signalgo >

[’\’ ProgParity ’:=’ < variable (VAR) of signaldo >]‘;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 41
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.4 DaDefExtSig - Discrete application - definition of the external signals

Continued

3.2.5 DaDefProcData - Discrete application - definition of the process data

Description
DaDefProcData is used to define the data of a connected process within the
discrete application.

Examples
Sequence for define data for one process:

! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

! Definition of the procdata

RECORD procdata

string string_comp;

ENDRECORD

! Definition of the tooldata

RECORD tooldata

string string_comp;

num time_event1;

num time_event2;

num time_event3;

ENDRECORD

! Definnition of the intdata

RECORD intdata

daintdata internal;

string string_comp;

ENDRECORD

! Allocate a procdata, a tooldata and a intdata

PERS procdata prc_data{NOF_POSS_PROCS} := [["PROCDATA1], ...];

PERS tooldata tool_data{NOF_POSS_PROCS} := [["TOOLDATA1", 0.20,
0.1, 0.05], ...];

PERS intdata int_data{NOF_POSS_PROCS} := [[[5, TRUE, TRUE, 1, 1,
0, 0,""], "INTDATA1"], ...];

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Define the process data

DaDefProcData proc_desc{1}, prc_data{1}, tool_data{1}, int_data{1};

The process data will be defined as specified after DaDefProcData ... execution.

Note

Those data must be predefined as persistents in a defined module.

Continues on next page
42 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.5 DaDefProcData - Discrete application - definition of the process data

Arguments
DaDefProcData ProcDesc ProcData ToolData IntProcData

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process.

ProcData

Process Data
Data type: anytype
The process data of the connected process.

ToolData

Tool Data
Data type: anytype
The tool data of the connected process.

IntProcData

Internal Process Data
Data type: anytype
The internal process data of the connected process.

Limitations
When defining process data, the process connected to the current applicationmust
be already installed. Otherwise the program execution will result in a fatal RAPID
user error.
If the specified data are not PERS, the program execution will result in a fatal RAPID
user error.

Syntax
DaDefProcData

[ProcDesc’:=’] < persistent array {*} (PERS) of dadescprc >
’,’

[ProcData’:=’] < persistent (PERS) of anytype > ‘,’

[ToolData’:=’] < persistent (PERS) of anytype > ‘,’

[IntProcData’:=’] < persistent (PERS) of anytype > ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

daintdata - Discrete application - internal data on
page 34

Internal data

3HAC050994-001 Revision: - 43
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.5 DaDefProcData - Discrete application - definition of the process data

Continued

3.2.6 DaDefProcSig - Discrete application - definition of the process signals

Description
DaDefProcSig is used to define the process signals of the connected process
within the discrete application.

Examples
! Possible number of processes in the system

CONST num NOF_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc procdesc{NOF_PROCS};

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Define the process signals for process one

DaDefProcSig proc_desc{1}, doInProgress1, doProcFault1, doExtFault1;

The process signals will be defined as specified after DaDefProcSig ... execution.

Note

Those signals must be already configurated in the system.

Arguments
DaDefProcSig ProcDesc InProgress ProcFault ExtFault [\Cancel]

[\Hold]

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process.

InProgress

In Progress
Data type: signaldo
The in progress signal of the connected process. This signal is set when the process
is running.

ProcFault

Process Fault
Data type: signaldo
The process fault signal of the connected process. This signal is set when a process
fault occured.

ExtFault

External Fault
Data type: signaldo

Continues on next page
44 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.6 DaDefProcSig - Discrete application - definition of the process signals

The external fault signal of the connected process. This signal is set when an
external fault occured.

[\Cancel]

Data type: signaldi
The cancel signal of the connected process. If this argument is specified and the
input is set to 1, the process will be aborted an reset.

[\Hold]

Data type: signaldi
The hold signal of the connected process. If this argument is specified and set to
1, the process will be hold untill the signal is set to 0 again.

Limitations
Make sure that the signals are configured. Otherwise the program execution will
result in a fatal RAPID user error.

Syntax
DaDefProcSig

[ProcDesc’:=’] < persistent array {*} (PERS) of dadescprc >
’,’

[InProgress’:=’] < variable (VAR) of signaldo > ‘,’

[ProcFault’:=’] < variable (VAR) of signaldo > ’,’

[ExtFault’:=’] < variable (VAR) of signaldo >

[’\’ Cancel ’:=’ < variable (VAR) of signaldi >]

[’\’ Hold ’:=’ < variable (VAR) of signaldi >] ‘;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 45
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.6 DaDefProcSig - Discrete application - definition of the process signals

Continued

3.2.7 DaDefUserData - Discrete application - define user data

Description
DaDefUserData is used to define process user data within the discrete
application.The instruction transmits the location of the data which gives the
framework the possibility to access the same data location as the RAPID-program,
i.e. changing the content of such a PERS data is immediately affecting the
framework.

Examples
! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

! Process ready timeout

PERS num timeout := 2;

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Define timeout user data

DaDefUserData proc_desc{j}, timeout, DA_PROC_TIMEOUT;

The specified user data will be defined as specified for the selected process after
DaDefUserData ... execution. Note that all processes may very well share the
same PERS data of a certain user data type if it shall be valid for the entire
application.

Arguments
DaDefUserData ProcDesc UserData Selector

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process.

UserData

User Process Data
Data type: anytype
User process data of any type. The type however has to match the intended user
data. See table below.

typeuser data selector

numDA_PROC_TIMEOUT

boolDA_SIMULATE_PROC

numDA_SIM_TIME

Continues on next page
46 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.7 DaDefUserData - Discrete application - define user data

typeuser data selector

boolDA_AUTO_RESTART

numDA_PROG_MAX

numDA_PARITY

boolDA_ASYNC_START

numDA_START_TYPE

boolDA_FORCED_SEQ

Selector

User Process Data Selector
Data type: num
Selector that describes the type of user data.

Note

For further details, see Programming discrete application on page 13.

Syntax
DaDefUserData

[ProcDesc’:=’] < persistent array {*} (PERS) of dadescprc >
’,’

[UserData’:=’] < persistent (PERS) of anytype > ’,’

[Selector’:=’] < expression (IN) of num> ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 47
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.7 DaDefUserData - Discrete application - define user data

Continued

3.2.8 DaGetCurrData - Discrete application - get current data

Description
DaGetCurrData is used to get a selected data of the connected process within
the discrete application.

Examples
Sequence for define data for one process:

Sequence for define data for one process:

! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

! User defined data types for the process

RECORD procdata

string string_comp;

ENDRECORD

RECORD tooldata

string string_comp;

num time_event1;

num time_event2;

num time_event3;

ENDRECORD

RECORD intdata

daintdata internal;

string string_comp;

ENDRECORD

! The allocated data objects

PERS procdata prc_data{NOF_POSS_PROCS} := [["PROCDATA1], ...];

PERS tooldata tool_data{NOF_POSS_PROCS} := [["TOOLDATA1", 0.20,
0.1, 0.05], ...];

PERS intdata int_data{NOF_POSS_PROCS} := [[[5, TRUE, TRUE, 1, 1,
0, 0,""], "INTDATA1"], ...];

VAR tooldata cur_tool_data;

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Define the users data of the connected process

DaDefProcData proc_desc{1}, prc_data{1}, tool_data{1}, int_data{1};

...

! Get the current tool data of the connected process

DaGetCurrData prc_desc{1}, cur_tool_data, DA_TOOL_DATA;

Continues on next page
48 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.8 DaGetCurrData - Discrete application - get current data

The allocated data object cur_tool_data will be get the current tool data
(DataSelect = DA_TOOL_DATA) of the connected process prc_desc. This data
can then be used as shown in the example below.

IF cur_tool_data.component1 = 1 THEN

...;

ENDIF

Arguments
DaGetCurrData ProcDesc Data DataSelect

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process.

Data

Data type: anytype
The allocated data object to be updated with the selected current data.

DataSelect

Data Selector
Data type: num
The type of data to be get. The available data types are:

Discrete application process dataDA_PROC_DATA1

Discrete application tool dataDA_TOOL_DATA2

Discrete application internal process dataDA_INTPROC_DATA3

Note

These data selectors are predefined in the system.

Limitations
If the data selector not valid, the program execution will result in a fatal RAPID
user error.

Syntax
DaGetCurrData

[ProcDesc’:=’] < persistent array {*} (PERS) of dadescprc >
‘,’

[Data ’:=’] <variable (VAR) of anytype>

[DataSelect ’:=’] <expression (IN) of num>

’;

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

Continues on next page
3HAC050994-001 Revision: - 49

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.8 DaGetCurrData - Discrete application - get current data

Continued

SeeFor information about

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

50 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.8 DaGetCurrData - Discrete application - get current data
Continued

3.2.9 DaProcML/MJ - Discrete Application - multiple processes

Description
DaProcML and DaProcMJ is used in discrete applications to control the motion
and a set of up to 4 processes. DaProcML moves the TCP lineary to the target
position. DaProcMJ moves the TCP non-lineary to the target position. Both
instructions is calling the process RAPID user hooks during motion.

Examples
DaProcML p100, vmax, tool5;

The TCP of tool5 is moved on a linear path to the position p100 with the speed
given in vmax and a set of up to 4 processes might be in preparation.
The process position is always a stop (discrete) position since the processes are
always performed while themanipulator is standing still. The tools of the processes
can be in preparation on the way to the position, that depends on the setup of the
application processes. The processes are started and supervised until finished
and the tools are in the home position.

DaProcMJ p100, vmax, tool5 \PreconError;

The TCP of tool5 is moved on a non-linear path to the position p100 with the
speed given in vmax and no process is performed.

Arguments
DaProcML ToPoint Speed Tool [\WObj] [\InPos] [\PreconError] [\ID]

[\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity for the
tool centre point, the tool reorientation and external axes.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool centre point is the point moved to
the specified destination position, and should be the position of the process tools.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.

Continues on next page
3HAC050994-001 Revision: - 51

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.9 DaProcML/MJ - Discrete Application - multiple processes

This argument can be omitted, and if it is, the position is related to the world
coordinate system by using the default work object wobj0.
If, a stationary TCP or coordinated external axes are used, this argument must be
specified in order to perform a movement relative to the work object.

Data type:

[\InPos]

In Position
Data type: switch
The optional switch argument \InPos inhibits the preactions of the connected
processes. That means, if this argument is specified, the event times will be set
internal to 0 for all the connected processes. The events will then be generated
when the manipulator is in the target position.

[\PreconError]

Precondition Error
Data type: switch
The optional switch argument \PreconError indicates a precondition error of the
connected processes. If this argument is specified, the manipulator will move to
the target position without perfoming a process.

[\ID]

Synchronization id
Data type: identno
This argument must be used in a MultiMove system, if coordinated synchronized
movement, and is not allowed in any other cases.
The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.

[[\TLoad]

Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead. For a
complete description of the TLoad argument, see theMoveL instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

Continues on next page
52 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.9 DaProcML/MJ - Discrete Application - multiple processes
Continued

Program execution
Internal sequence in a DaProcML/DaProcMJ instruction:

InformationActionSequence

The used work object, tool and
destination position is stored in:

• da_current_wobj
• da_current_tool
• da_current_point

and can be reused for some ser-
vice functions etc

Move to the target position
without performing a process.

If a precondition error
is indicated:

End of the
DaProcML/DaProcMJ
instruction

Retrieve the calculated first time
event from the discrete applica-
tion framework.

Calculate the event times, if the
argument \InPos is omitted, for
all processes by calling the
RAPID user hook DaCalcEvtXX
(XX = Application name) and
setup the time events.

If no precondition error
is indicated:

Note

If the argument \InPos is defined, the RAPID user hook DaCalcEvtXX will not
be called, instead all the event times will be setup with 0.

• Setup the three different I/O trigg actions to activate the RAPID process user
hooks.

• Execute themovement towards the destination position with the trigg events
on the path. If the argument \InPos is used, all the events will be generated
when the manipulator has reached his destination position.

• The process sequences will be started and the RAPID user hooks will be
called as described in Programming discrete application on page 13.

• Wait until the processes are ready or canceled.
• The default program execution is the concurrencymode, that means the next

movement will be precalculated, but the manipulator will be hold (the next
movement instruction is prepared). The manipulator will be released and
carry on with the already precalculated movement after the processes are
ready or canceled. The user can change the execution mode by setting the
internal daintdata component noconc to TRUE. If the component noconc
is set to TRUE, the program execution stops and waits for the ready signal
of every process without precalculating the next movement.

• The current in use work object, tool and the destination position is stored in:
A da_current_wobj

B da_current_tool

C da_current_point and can be reused for some service functions
etc.

• End of the DaProcML/DaProcMJ instruction.

Continues on next page
3HAC050994-001 Revision: - 53

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.9 DaProcML/MJ - Discrete Application - multiple processes

Continued

Syntax
DaProcML/DaProcMJ

[ToPoint’:=’] < expression (IN) of robtarget > ’,’

[Speed’:=’] < expression (IN) of speeddata > ’,’

[Tool’:=’] < persistent (PERS) of tooldata >

[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]

[’\’ InPos]

[’\’ PreconError]

[’\’ ID ’:=’ < expression (IN) of identno >]

['\' TLoad ':='] < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Data type speeddata in Technical reference
manual - RAPID Instructions, Functions and Data
types.

Definition of velocity

Data type zonedata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

Definition of zonedata

Data type tooldata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

Definition of tool

Data type wobjdata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

Definition of work objects

Data type loaddata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

Definition of loaddata

Instruction MoveLMoveL

in Technical referencemanual - RAPID Instructions,
Functions and Data types.

54 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.9 DaProcML/MJ - Discrete Application - multiple processes
Continued

3.2.10 DaSetCurrData - Discrete application - set current data

Description
DaSetCurrData is used to set a selected data of the connected process within
the discrete application .

Examples
Sequence for define data for one process:

! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc procdesc{NOF_POSS_PROCS};

! User defined data types for the process

RECORD procdata

string string_comp;

ENDRECORD

RECORD tooldata

string string_comp;

num time_event1;

num time_event2;

num time_event3;

ENDRECORD

RECORD intdata

daintdata internal;

string string_comp;

ENDRECORD

! The allocated data objects

PERS procdata prc_data{NOF_POSS_PROCS} := [["PROCDATA1], ...];

PERS tooldata tool_data{NOF_POSS_PROCS} := [["TOOLDATA1", 0.20,
0.1, 0.05], ...];

PERS intdata int_data{NOF_POSS_PROCS} := [[[5, TRUE, TRUE, 1, 1,
0, 0,""], "INTDATA1"], ...];

VAR tooldata cur_tool_data;

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Define the users data of the connected process

DaDefProcData prc_desc{1}, prc_data{1}, tool_data{1},int_data{1};

...

! Get the current tool data of the connected process

DaGetCurrData proc_desc{1}, cur_tool_data, DA_TOOL_DATA;

...

cur_tool_data.string_comp := TOOLDATA2;

DaSetCurrData proc_desc, cur_tool_data, DA_TOOL_DATA;

Continues on next page
3HAC050994-001 Revision: - 55

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.10 DaSetCurrData - Discrete application - set current data

The tool data (DataSelect = DA_TOOL_DATA) of the connected process
proc_desc{1} will be set to the new defined user tool data cur_tool_data.

Arguments
DaSetCurrData ProcDesc Data DataSelect

ProcDesc

Process Descriptor
Data type: dadescprc
The descriptor of the connected process.

Data

Data type: anytype
The data to be setup in the connected process.

DataSelect

Data Selector
Data type: num
The type of data to be get. The available data types are:

Discrete application process dataDA_PROC_DATA1

Discrete application tool dataDA_TOOL_DATA2

Discrete application internal process dataDA_INTPROC_DATA3

Note

These data selectors are predefined in the system.

Limitations
If the data selector not valid, the program execution will result in a fatal RAPID
user error.

Syntax
DaSetCurrData

[ProcDesc’:=’] < persistent array {*} (PERS) of dadescprc >
‘,’

[Data’:=’] < variable (VAR) of anytype > ‘,’

[DataSelect’:=’] < expression (IN) of num > ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

56 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.10 DaSetCurrData - Discrete application - set current data
Continued

3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour

Description
DaSetupAppBehav enables the application writer to influence the framework.
Usually the framework will call six of the eleven sequence hooks once. Five of
them can be deactivated with aid of the instruction DaSetupAppBehav, namely
DaPrepPrcXX, DaTmEvt1XX, DaTmEvt2XX, DaTmEvt3XX, DaStartXX. This
will save time as each hook takes at least 30 ms to execute.
DaSetupAppBehavwill affect all the active processes. A call to DaSetupAppBehav
without arguments will activate all the deactivated sequence hooks, i.e. the
framework will call all the five sequence hooks once.

Examples
! There is no code written in the both sequence hooks -

! DaTmEvt2XX and DaTmEvt3XX, so they will be deactivated.

DaSetupAppBehav \Exclude1:=TmEvt2 \Exclude2:=TmEvt3;

In this example the internal kernel won’t make a call to neither DaTmEvt2XX or
DaTmEvt3XX. This two sequence hooks won’t be called for the activated processes.

Arguments
DaSetupAppBehav [\Exclude1] [\Exclude2] [\Exclude3] [\Exclude4]

[\Exclude5]

[\Exclude1]

Data type: action_num
A selector connected to one of the five possible sequence hooks. The selector will
deactivate the belonging sequence hook. The following table shows the possible
selector constants.

sequence hooksequence hook selector

PrepPrcDaPrepPrcXX

TmEvt1[\Exclude2]DaTmEvt1XX

TmEvt2DaTmEvt2XX

TmEvt3DaTmEvt3XX

StartDaStartXX

[\Exclude2]

Same as \Exclude1.

[\Exclude3]

Same as \Exclude1.

[\Exclude4]

Same as \Exclude1.

[\Exclude5]

Same as \Exclude1.

Continues on next page
3HAC050994-001 Revision: - 57

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour

Limitations
The instruction must be called before calling the routine DaProcML/DaProcMJ.

Syntax
DaSetupAppBehav

[’\’ Exclude2 ’:=’ < expression (IN) of action_num >]

[’\’ Exclude3 ’:=’ < expression (IN) of action_num >]

[’\’ Exclude4 ’:=’ < expression (IN) of action_num >]

[’\’ Exclude5 ’:=’ < expression (IN) of action_num >]

58 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour
Continued

3.2.12 DaStartManAction - Discrete application - execute an application manually

Description
DaStartManAction is used to run an application independently of the motion.
If no argument is used, the processes that are already active will run. If arguments
are used, all other processes will be stopped and only the specified processes will
run.

Examples

Example 1
! Execute the application independently of the motion

DaStartManAction;

Example 2
! Execute the application independently of the motion

! with process 1 and 3 running and the other processes stopped

DaStartManAction \Proc1 \Proc3;

Arguments
DaStartManAction [\Proc1] [\Proc2] [\Proc3] [\Proc4]

[\Proc1]

Data type: switch
Is used to run process 1 and stop all processes not specified as argument in the
DaStartManAction instruction.

[\Proc2]

Data type: switch
Is used to run process 2 and stop all processes not specified as argument in the
DaStartManAction instruction.

[\Proc3]

Data type: switch
Is used to run process 3 and stop all processes not specified as argument in the
DaStartManAction instruction.

[\Proc4]

Data type: switch
Is used to run process 4 and stop all processes not specified as argument in the
DaStartManAction instruction.

Syntax
DaStartManAction

[\Proc1]

[\Proc2]

[\Proc3]

[\Proc4]

Continues on next page
3HAC050994-001 Revision: - 59

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.12 DaStartManAction - Discrete application - execute an application manually

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

60 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.12 DaStartManAction - Discrete application - execute an application manually
Continued

3.2.13 DaGetAppDescr - Discrete application - get application descriptors

Description
DaGetAppDescr is used to get the array of application descriptors from the
application within the discrete application.

Examples
! Number of possible robots running an application. In a MultiMove

! system there will be possible to have four intances of an

! application, in a single system one.

CONST num MAX_NOF_ROB := 4;

! Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB};

...

! Get application descriptors

DaGetAppDescr app_desc;

This data can then be used as shown in the example below.
IF app_desc{1}.taskno = 1 THEN

...;

ENDIF

The descriptors of the application will be given to the allocated data object
app_desc.

Arguments
DaGetAppDescr AppDesc

AppDesc

Application Descriptor
Data type: dadescapp
An allocated data object to get the application descriptor.

Limitations
The application name must not haave more than 5 characters. Otherwise the
program execution will result in a fatal RAPID user error.

Syntax
DaGetAppDescr

[AppDesc’:=’] < persistent array {*} (PERS) of dadescapp > ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

3HAC050994-001 Revision: - 61
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.13 DaGetAppDescr - Discrete application - get application descriptors

3.2.14 DaGetAppIndex - Discrete application - index of application array

Description
DaGetAppIndex is used to find out what application descriptor current RAPID
task uses.

Examples
! Number of possible robots running an application. In a MultiMove

! system there will be possible to have four intances of an

! application, in a single system one.

CONST num MAX_NOF_ROB := 4;

! Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB} := [[0, 0, 0, 0, 0, 0, 0, ""],
...];

...

! Index of the application descriptor array

VAR num index;

! Get which RAPID task is running now

DaGetAppIndex index;

This data can then be used as shown in the example below.
IF app_desc{index}.taskno = 1 THEN

...;

ENDIF

! In a MultiMove system there can be more than

! one robot -> more than one application descriptor

The application descriptors are saved in an array. The array is filled in when the
system is starting up. To find out which application descriptor THIS task uses, the
instruction DaGetAppIndex can be used. This instruction is only useful in a
MultiMove system, where more than one task can run the application.

Arguments
DaGetAppIndex index

index

Data type: num
The index of the array of application descriptors.

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaGetAppIndex [index’:=’] < variable (VAR) of num> ’;’

Continues on next page
62 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.14 DaGetAppIndex - Discrete application - index of application array

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 63
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.14 DaGetAppIndex - Discrete application - index of application array

Continued

3.2.15 DaGetNumOfProcs - Discrete application - get number of processes

Description
DaGetNumOfProcs is used to find out how many processes that are installed in
the system.

Examples
! Number of processes

VAR num NOF_PROCS;

...

! Get number of processes

DaGetNumOfProcs NOF_PROCS

Number of processes depends on how many DA_PROC tasks that are configured
for the system. Two DA_PROC tasks installed means that NOF_PROCS will be two.

Arguments
DaGetNumOfProcs numofprocs

numofprocs

number of processes
Data type: num
Number of processes installed in the system.

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaGetNumOfProcs [numofprocs’:=’] < variable (VAR) of num> ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

64 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.15 DaGetNumOfProcs - Discrete application - get number of processes

3.2.16 DaGetNumOfRob - Discrete application - number of robots

Description
DaGetNumOfRob is used to find out how many robots (i.e tasks) running the
application, that are installed in the system.

Examples
! Number of robots

VAR num NOF_ROB;

...

! Get number of robots

DaGetNumOfRob NOF_ROB;

Number of robots depends on how many motion tasks in the system that are
configured to run the application. A motion task (T_ROB1, T_ROB2..) runs an
application if at least one process task (DA_PROC1, DA_PROC2...) is connected
to the same mechanical unit group. In a single system all tasks use the same
mechanical unit group, but in a MultiMove system that differs. For more information,
see Task installation on page 24.

Arguments
DaGetNumOfRob numofrob

numofrob

number of robots
Data type: num
Number of application tasks installed in the system.

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaGetNumOfRob [numofrob’:=’] < variable (VAR) of num> ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 65
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.16 DaGetNumOfRob - Discrete application - number of robots

3.2.17 DaGetPrcDescr - Discrete application - get process descriptor

Description
DaGetPrcDescr is used to get the array of all connected process descriptors of
the application within the discrete application.

Examples
! Possible number of processes in the system.

CONST num NOF_POSS_PROCS := 4;

! Number of processes installed

PERS num NOF_POSS_PROCS := 1;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

...

! Get process descriptors

DaGetPrcDescr proc_desc;

This data can then be used as shown in the example below.
IF proc_desc{1}.taskno = 1 THEN

...;

ENDIF

The descriptors of the application will be given to the allocated data object
proc_desc.

Arguments
DaGetPrcDescr ProcDesc AppDesc [\ProcName] | [\ProcNo]

ProcDesc

Process Descriptor
Data type: dadescprc
An allocated data object to get the process descriptor.

AppDesc

Application Descriptor
Data type: dadescapp
The descriptor of the connected application.

[\ProcName]

Process Name
Data type: string
The name of the connected process. If this argument is omitted, the connected
process descriptor which refers to the process number will be retrieved.

[\ProcNo]

Process Number
Data type: num

Continues on next page
66 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.17 DaGetPrcDescr - Discrete application - get process descriptor

The number of the connected process. If this argument is omitted, the connected
process descriptor which refers to the process name will be retrieved.

Limitations
One of the two optionals arguments (\ProcName, \ProcNo) must be specified,
otherwise the program execution will result in an fatal RAPID user error.

Error handling
If a process, referenced either by the process name or process number, cannot
be found, the system variable ERRNO is set to ERR_DA_UNKPROC. This error can
then be handled in the RAPID error handler (see example below).

Example
...

VAR dadescapp app_desc;

VAR dadescprc prc_desc{4};

VAR string app_name;

VAR num proc_no;

...

DaGetActApp app_desc, app_name;

...

FOR i FROM 1 TO 4 DO

proc_no := i;

DaGetPrcDescr prc_desc{i}, app_desc \ProcNo:=proc_no;

ENDFOR

...

ERROR

IF (ERRNO = ERR_DA_UNKPROC) THEN

TPWrite "Can’t find the process " \Num:=proc_no;

TRYNEXT;

ENDIF

If any of the processes cannot be found, the user will get a message about which
process does not exist.

Syntax
DaGetPrcDescr

[ProcDesc’:=’] < variable (VAR) of dadescprc > ’,’

[AppDesc’:=’] < variable (VAR) of dadescapp >

[‘\’ProcName’:=’] < expression (IN) of string >

| [‘\’ProcNo’:=’] < expression (IN) of num > ’;’

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 67
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.17 DaGetPrcDescr - Discrete application - get process descriptor

Continued

3.3 RAPID Functions

3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event

Description
DaGetFstTimeEvt is used to get the first time event of all activated processes
within the discrete application.

Examples
Sequence for define data for one process:

! Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

! Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_PROCS};

! The event times of the processes

VAR num evt_time_prc1{3} := [2.5, 1.8, 1.0];

VAR num evt_time_prc2{3} := [2.2, 1.7, 0.8]

! The first time event

VAR num first_time_event;

...

! Get process descriptors

DaGetPrcDescr proc_desc;

! Get number of processes

DaGetNumOfProcs NOF_PROCS;

! Setup the time events in DaCalcEvtXX

...

! Activate all processes

FOR i FROM 1 TO NOF_PROCS

DaActProc proc_desc{i};

...

ENDFOR

! Get first time event

first_time_event := DaGetFstTimeEvt();

The content of the variable first_time_event will be 2.5 (the first time event
which is specified in the current running processes: evt_time_prc1{1}) after
the DaGetFstTimeEvt execution.

Return value
Data type: num
The first time event in seconds.

Continues on next page
68 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event

Limitations
When using DaGetFstTimeEvt the processes must be activated. It will always
return the first time event from the current activated processes.
If no process is active, the program execution will result in a fatal RAPID user error.

Syntax
DaGetFstTimeEvt ‘(‘ ‘)’ ’;’

A function with a return value of the data type num.

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

3HAC050994-001 Revision: - 69
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event

Continued

3.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system

Description
DaCheckMMSOpt is used to find out if this is a Single or MultiMove system.

Examples
IF (DaCheckMMSOpt()) THEN

...

ENDIF

If an option for MultiMove is installed, DaChecMMSOpt returns TRUE, otherwise
FALSE (single system).

Return value
Data type: bool
TRUE: MultiMove system
FALSE: Single system

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaCheckMMSOpt ´(´ ´) ´;´

A function with a return value of the data type bool.

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

70 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system

3.3.3 DaGetMP - Discrete application - Get motion planner

Description
DaGetMP is used to get the motion planner that a specific application descriptor
is configured for.

Examples
! Number of possible robots running an application. In a MultiMove

! system there will be possible to have four intances of an

! application, in a single system one.

CONST num MAX_NOF_ROB := 4;

! Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB} := [[0, 0, 0, 0, 0, 0, 0, ""],
...];

...

VAR num mp;

mp:= DaGetMP(1);

The application descriptors are saved in an array. The index of the array for a
particular application descriptor is sent to DaGetMP. The motion planner that is
configured for the descriptor is returned. This function is only useful in a MultiMove
system, where all motion tasks uses different motion planners. For more
information, see Application manual - MultiMove.

Return value
Data type: num
Number of motion planner

Arguments
DaGetMP(index)

Index

Data type: num
The index of the array of application descriptors.

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaGetMP ´(´[index ’:=’] < variable (VAR) of num> ´) ´;´

A function with a return value of the data type num.

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

Continues on next page
3HAC050994-001 Revision: - 71

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.3 DaGetMP - Discrete application - Get motion planner

SeeFor information about

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

72 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.3 DaGetMP - Discrete application - Get motion planner
Continued

3.3.4 DaGetRobotName - Discrete application - Get Robot name

Description
DaGetRobotName is used to get the name of the robot that uses a specific
application descriptor.

Examples
! Number of possible robots running an application.

! In a MultiMove system, it is possible to have four intances

! of an application, in a single system one.

CONST num MAX_NOF_ROB := 4;

! Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB} := [[0, 0, 0, 0, 0, 0, 0, ""],
...];

...

VAR string rob_name;

rob_name := DaGetRobotName(1);

The application descriptors are saved in an array. The index of the array for a
particular application descriptor is sent to DaGetRobotName. The name of the
robot that uses the descriptor is returned.

Return value
Data type: string
Name of robot

Arguments
DaGetRobotName(index)

Index

Data type: num
The index of the array of application descriptors.

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaGetRobotName

´(´[index ’:=’] < variable (VAR) of num> ´) ´;´

A function with a return value of the data type string.

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

Continues on next page
3HAC050994-001 Revision: - 73

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.4 DaGetRobotName - Discrete application - Get Robot name

SeeFor information about

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

74 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.4 DaGetRobotName - Discrete application - Get Robot name
Continued

3.3.5 DaGetTaskName - Discrete application - Get Task name

Description
DaGetTaskName is used to get the name of the of the task, that uses a specific
application descriptor.

Examples
! Number of possible robots running an application.

! In a MultiMove system, it is possible to have four intances

! of an application, in a single system one.

CONST num MAX_NOF_ROB := 4;

! Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB} := [[0, 0, 0, 0, 0, 0, 0, ""],
...];

...

VAR string task_name;

task_name := DaGetTaskName(1);

The application descriptors are saved in an array. The index of the array for a
particular application descriptor is sent to DaGetTaskName. The name of the task
that uses the descriptor is returned.

Return value
Data type: string
Name of motion task.

Arguments
DaGetTaskName(index)

Index

Data type: num
The index of the array of application descriptors.

Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax
DaGetTaskName

´(´[index ’:=’] < variable (VAR) of num> ´) ´;´

A function with a return value of the data type string.

Related information

SeeFor information about

dadescapp - Discrete application - application
descriptor on page 29

Application descriptor

Continues on next page
3HAC050994-001 Revision: - 75

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.5 DaGetTaskName - Discrete application - Get Task name

SeeFor information about

dadescprc - Discrete application - process descriptor
on page 32

Process descriptor

76 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.3.5 DaGetTaskName - Discrete application - Get Task name
Continued

Contact us

ABB AB
Discrete Automation and Motion
Robotics
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics
Discrete Automation and Motion
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 51489000

ABB Engineering (Shanghai) Ltd.
5 Lane 369, ChuangYe Road
KangQiao Town, PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

www.abb.com/robotics

3H
AC

05
09

94
-0
01

,R
ev

-,
en

	Cover Page
	Table of contents
	1 Discrete application summary
	Overview
	1.1 Summary (DAP)
	Discrete application features
	Principles of discrete applications
	Layers of a discrete application
	Programming principles
	Discrete application instructions
	Discrete application functions
	Discrete application data types
	Discrete application user hooks

	2 Programming discrete application
	2.1 Programming summary
	Overview
	2.1.1 Designing a discrete application
	About this section
	Modules
	Base module
	Process module
	Tool module

	Application name
	Process task
	Initialization
	Initialization of application and processes
	Process transfer data definition

	User variables
	External device connection signals
	Process signals
	Designing the shell-routine
	Template of a master routine
	Process sequence
	Sequence parameters
	Application writer’s hooks
	EG1BAS.SYS
	EG1PRC.SYS

	Sequence control
	Sequence influence
	Exceptions
	Process abortion
	Application abortion
	Process hold
	Process release

	Utilities

	2.1.2 Installation
	I/O configuration
	RAPID system configuration
	Task installation
	Task addition
	Power On
	Template of a power on routine
	Module
	RAPID task and module setup example

	3 RAPID Reference
	3.1 RAPID Data types
	3.1.1 dadescapp - Discrete application - application descriptor
	Description
	Overview
	Example
	Components
	ipm
	id
	taskno
	motplan
	noofprocs
	dadamno
	robotname
	taskname

	Related information

	3.1.2 dadescprc - Discrete application - process descriptor
	Description
	Overview
	Example
	Components
	ipm
	id
	taskno
	motplan
	procno
	equipno
	daprocno
	active

	Related information

	3.1.3 daintdata - Discrete application - internal data
	Description
	Overview
	Components
	prog_no
	noconc
	equip_act
	start_no
	act_start_no
	counter1
	counter2
	prog_name

	Example
	Structure

	3.2 RAPID Instructions
	3.2.1 DaActProc - Discrete application - activate process
	Description
	Examples
	Arguments
	ProcDesc

	Limitations
	Syntax
	Related information

	3.2.2 DaDeactAllProc - Discrete application - deactivate all processes
	Description
	Examples
	Limitations
	Syntax
	Related information

	3.2.3 DaDeactProc - Discrete application - deactivate process
	Description
	Examples
	Arguments
	ProcDesc

	Limitations
	Syntax
	Related information

	3.2.4 DaDefExtSig - Discrete application - definition of the external signals
	Description
	Examples
	Arguments
	ProcDesc
	Start1
	[\Start2]
	Ready1
	[\Ready2]
	[\Reset]
	[\Stop]
	ProgNo
	[\ProgParity]

	Limitations
	Syntax
	Related information

	3.2.5 DaDefProcData - Discrete application - definition of the process data
	Description
	Examples
	Arguments
	ProcDesc
	ProcData
	ToolData
	IntProcData

	Limitations
	Syntax
	Related information

	3.2.6 DaDefProcSig - Discrete application - definition of the process signals
	Description
	Examples
	Arguments
	ProcDesc
	InProgress
	ProcFault
	ExtFault
	[\Cancel]
	[\Hold]

	Limitations
	Syntax
	Related information

	3.2.7 DaDefUserData - Discrete application - define user data
	Description
	Examples
	Arguments
	ProcDesc
	UserData
	Selector

	Syntax
	Related information

	3.2.8 DaGetCurrData - Discrete application - get current data
	Description
	Examples
	Arguments
	ProcDesc
	Data
	DataSelect

	Limitations
	Syntax
	Related information

	3.2.9 DaProcML/MJ - Discrete Application - multiple processes
	Description
	Examples
	Arguments
	ToPoint
	Speed
	Tool
	[\WObj]
	
	[\InPos]
	[\PreconError]
	[\ID]
	[[\TLoad]

	Program execution
	Syntax
	Related information

	3.2.10 DaSetCurrData - Discrete application - set current data
	Description
	Examples
	Arguments
	ProcDesc
	Data
	DataSelect

	Limitations
	Syntax
	Related information

	3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour
	Description
	Examples
	Arguments
	[\Exclude1]
	[\Exclude2]
	[\Exclude3]
	[\Exclude4]
	[\Exclude5]

	Limitations
	Syntax

	3.2.12 DaStartManAction - Discrete application - execute an application manually
	Description
	Examples
	Example 1
	Example 2

	Arguments
	[\Proc1]
	[\Proc2]
	[\Proc3]
	[\Proc4]

	Syntax
	Related information

	3.2.13 DaGetAppDescr - Discrete application - get application descriptors
	Description
	Examples
	Arguments
	AppDesc

	Limitations
	Syntax
	Related information

	3.2.14 DaGetAppIndex - Discrete application - index of application array
	Description
	Examples
	Arguments
	index

	Limitations
	Syntax
	Related information

	3.2.15 DaGetNumOfProcs - Discrete application - get number of processes
	Description
	Examples
	Arguments
	numofprocs

	Limitations
	Syntax
	Related information

	3.2.16 DaGetNumOfRob - Discrete application - number of robots
	Description
	Examples
	Arguments
	numofrob

	Limitations
	Syntax
	Related information

	3.2.17 DaGetPrcDescr - Discrete application - get process descriptor
	Description
	Examples
	Arguments
	ProcDesc
	AppDesc
	[\ProcName]
	[\ProcNo]

	Limitations
	Error handling
	Example

	Syntax
	Related information

	3.3 RAPID Functions
	3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event
	Description
	Examples
	Return value
	Limitations
	Syntax
	Related information

	3.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system
	Description
	Examples
	Return value
	Limitations
	Syntax
	Related information

	3.3.3 DaGetMP - Discrete application - Get motion planner
	Description
	Examples
	Return value
	Arguments
	Index

	Limitations
	Syntax
	Related information

	3.3.4 DaGetRobotName - Discrete application - Get Robot name
	Description
	Examples
	Return value
	Arguments
	Index

	Limitations
	Syntax
	Related information

	3.3.5 DaGetTaskName - Discrete application - Get Task name
	Description
	Examples
	Return value
	Arguments
	Index

	Limitations
	Syntax
	Related information

