
ROBOTICS

Technical reference manual
RAPID kernel

Trace back information:
Workspace Main version a468
Checked in 2022-08-23
Skribenta version 5.5.019

Technical reference manual
RAPID kernel

RobotWare 6.14

Document ID: 3HAC050946-001
Revision: J

© Copyright 2004-2022 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2004-2022 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...
9How to read this manual ...

111 Introduction
111.1 Design objectives ..
121.2 Language summary ...
171.3 Syntax notation ...
181.4 Error classification ...

192 Lexical elements
192.1 Character set ..
202.2 Lexical units ...
212.3 Identifiers ..
222.4 Reserved words ..
232.5 Numerical literals ..
242.6 Bool literals ..
252.7 String literals ..
262.8 Delimiters ..
272.9 Placeholders ..
282.10 Comments ...
292.11 Data types ...
302.12 Scope rules for data types ..
312.13 The atomic data types ..
332.14 The record data types ..
362.15 The alias data types ...
372.16 Data type value classes ..
392.17 Equal type ...
402.18 Data declarations ..
422.19 Predefined data objects ..
432.20 Scope rules for data objects ..
442.21 Storage class ...
452.22 Variable declarations ...
462.23 Persistent declarations ...
482.24 Constant declarations ..

493 Expressions
493.1 Introduction to expressions ...
513.2 Constant expressions ..
523.3 Literal expressions ..
533.4 Conditional expressions ...
543.5 Literals ..
553.6 Variables ...
573.7 Persistents ...
583.8 Constants ..
593.9 Parameters ..
603.10 Aggregates ..
613.11 Function calls ...
633.12 Operators ..

654 Statements
654.1 Introduction to statements ..
664.2 Statement termination ..
674.3 Statement lists ..
684.4 Label statement ..
694.5 Assignment statement ...

Technical reference manual - RAPID kernel 5
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

Table of contents

704.6 Procedure call ..
724.7 The Goto statement ...
734.8 The Return statement ..
744.9 The Raise statement ..
754.10 The Exit statement ..
764.11 The Retry statement ..
774.12 The Trynext statement ...
784.13 The Connect statement ..
794.14 The IF statement ..
804.15 The compact IF statement ..
814.16 The For statement ...
824.17 The While statement ..
834.18 The Test statement ..

855 Routine declarations
855.1 Introduction to routine declarations ..
865.2 Parameter declarations ..
895.3 Scope rules for routines ...
905.4 Procedure declarations ..
915.5 Function declarations ...
925.6 Trap declarations ..

936 Backward execution
936.1 Introduction to backward execution ..
946.2 Backward handlers ..
966.3 Limitations for Move instructions in a backward handler ...

977 Error recovery
977.1 Error handlers ..
997.2 Error recovery with long jump ..

1037.3 Nostepin routines ..
1047.4 Asynchronously raised errors ..
1127.5 The instruction SkipWarn ..
1137.6 Motion error handling ...

1178 Interrupts

1219 Task modules
1219.1 Introduction to task modules ...
1229.2 Module declarations ..
1249.3 System modules ...
1259.4 Nostepin modules ...

12710 Syntax summary

13711 Built-in routines

13912 Built-in data objects

14113 Built-in objects

14514 Intertask objects

14915 Text files

15116 Storage allocations for RAPID objects

153Index

6 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This manual contains a formal description of the ABB Robotics robot programming
language RAPID.
This manual describes RobotWare 6.

Who should read this manual?
This manual is intended for someone with some previous experience in
programming, for example, a robot programmer.

References

Document IDReference

3HAC050941-001Operating manual - IRC5 with FlexPendant

3HAC050917-001Technical referencemanual - RAPID Instruc-
tions, Functions and Data types

3HAC050947-001Technical reference manual - RAPID Over-
view

3HAC050948-001Technical reference manual - System para-
meters

Revisions

DescriptionRevision

Released with RobotWare 6.0.-

Released with RobotWare 6.01.
• Added information about Nostepin modules on page 125.

A

Released with RobotWare 6.03.
• Minor corrections.

B

Released with RobotWare 6.04.
• Added information to chapter Motion error handling, section Limita-

tions on page 115.

C

Released with RobotWare 6.06.
• Updated section Motion error handling on page 113.

D

Released with RobotWare 6.07.
• Added information about comments in records to both Comments

on page 28 and The record data types on page 33.

E

Released with RobotWare 6.12.
• Minor correction of displayed characters inCharacter set on page19.
• Removed information about .eng files, see Text files on page 149.

Use .xml format instead.

F

Released with RobotWare 6.13.
• Added support for division of pos, see Multiplication operators on

page 63.

G

Released with RobotWare 6.13.02.
• Clarified limitation for backward execution and execution errors.

H

Continues on next page
Technical reference manual - RAPID kernel 7
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

Overview of this manual

DescriptionRevision

Released with RobotWare 6.14.
• Added support for scalar vector division of pos, see Multiplication

operators on page 63.

J

8 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

Overview of this manual
Continued

How to read this manual
Typographic conventions

Examples of programs are always displayed in the same way as they are output
to a file or printer. This differs from what is displayed on the FlexPendant in the
following ways:

• Certain control words that are masked in the FlexPendant display are printed,
for example words indicating the start and end of a routine.

• Data and routine declarations are printed in the formal form, for example
VAR num reg1;.

In descriptions in this manual, all names of instructions, functions, and data types
are written in monospace font, for example: TPWrite. Names of variables, system
parameters, and options are written in italic font. Comments in example code are
not translated (even if the manual is translated).

Syntax rules
Instructions and functions are described using both simplified syntax and formal
syntax. If you use the FlexPendant to program, you generally only need to know
the simplified syntax, since the robot automatically makes sure that the correct
syntax is used.

Example of simplified syntax
This is an example of simplified syntax with the instruction TPWrite.

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient] [\Dnum]

• Compulsory arguments are not enclosed in brackets.
• Optional arguments are enclosed in square brackets []. These arguments

can be omitted.
• Arguments that are mutually exclusive, that is cannot exist in the instruction

at the same time, are separated by a vertical bar |.
• Arguments that can be repeated an arbitrary number of times are enclosed

in curly brackets { }.
The above example uses the following arguments:

• String is a compulsory argument.
• Num, Bool, Pos, Orient, and Dnum are optional arguments.
• Num, Bool, Pos, Orient, and Dnum are mutually exclusive.

Example of formal syntax
TPWrite

[String ':='] <expression (IN) of string>

['\'Num':=' <expression (IN) of num>] |

['\'Bool':=' <expression (IN) of bool>] |

['\'Pos':=' <expression (IN) of pos>] |

['\'Orient ':=' <expression (IN) of orient>]

['\' Dnum':=' <expression (IN) of dnum]';'

• The text within the square brackets [] may be omitted.

Continues on next page
Technical reference manual - RAPID kernel 9
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

How to read this manual

• Arguments that are mutually exclusive, that is cannot exist in the instruction
at the same time, are separated by a vertical bar |.

• Arguments that can be repeated an arbitrary number of times are enclosed
in curly brackets { }.

• Symbols that are written in order to obtain the correct syntax are enclosed
in single quotation marks (apostrophes) ' '.

• The data type of the argument (italics) and other characteristics are enclosed
in angle brackets < >. See the description of the parameters of a routine for
more detailed information.

The basic elements of the language and certain instructions are written using a
special syntax, EBNF. This is based on the same rules, but with some additions.

• The symbol ::= means is defined as.
• Text enclosed in angle brackets < > is defined in a separate line.

Example
GOTO <identifier> ';'

<identifier> ::= <ident> | <ID>

<ident> ::= <letter> {<letter> | <digit> | '_'}

10 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

How to read this manual
Continued

1 Introduction
1.1 Design objectives

The RAPID concept
The RAPID language supports a leveled programming concept where new routines,
data objects, and data types can be installed for a specific robot system. This
concept makes it possible to customize (extend the functionality of) the
programming environment and is fully supported by the RAPID programming
language.
In addition, RAPID includes a number of powerful features:

• Modular programming with tasks and modules
• Procedures and functions
• Type definitions
• Variables, persistents, and constants
• Arithmetic
• Control structures
• Backward execution support
• Error recovery
• Undo execution support
• Interrupt handling
• Placeholders

Technical reference manual - RAPID kernel 11
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.1 Design objectives

1.2 Language summary

Tasks and modules
A RAPID application is called a task. A task is composed of a set of modules. A
module contains a set of data and routine declarations. The task buffer is used to
host modules that are currently in use (execution, development) in a system.
RAPID distinguishes between task modules and system modules. A task module
is considered to be a part of the task/application while a system module is
considered to be a part of the system. System modules are automatically loaded
to the task buffer during system start-up and are aimed to (pre)define common,
system specific data objects (tools, weld data, move data etc.), interfaces (printer,
log file ..) etc.
While small applications usually are contained in a single task module (besides
the system modules), larger applications may have a main task module that in turn
references routines and/or data contained in one or more other task modules.
One task module contains the entry procedure of the task. Running the task really
means that the entry routine is executed. Entry routines cannot have parameters.

Routines
There are three types of routines: functions, procedures, and traps.

• A function returns a value of a specific type and is used in expression context.
• A procedure does not return any value and is used in statement context.
• Trap routines provide a means to respond to interrupts. A trap routine can

be associated with a particular interrupt and is then later automatically
executed if that interrupt occurs.

User routines
User (defined) routines are defined using RAPID declarations.
A RAPID routine declaration specifies the routine name, routine parameters, data
declarations, statements, and possibly a backward handler and/or error handler
and/or undo handler.

Predefined routines
Predefined routines are supplied by the system and always available.
There are two types of predefined routines: built-in routines and installed routines.

• Built-in routines (like arithmetic functions) are a part of the RAPID language.
• Installed routines are application or equipment dependent routines used for

the control of the robot arm, grippers, sensors etc.

Note

From the point of view of a user there is no difference between built-in routines
and installed routines.

Continues on next page
12 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.2 Language summary

Data objects
There are four types of data objects: constants, variables, persistents, and
parameters.

• A persistent (data object) can be described as a "persistent" variable. It keeps
its value between sessions.

• A variable value is lost (re-initialized) at the beginning of each new session,
that is, when a module is loaded (module variable) or a routine is called
(routine variable).

Data objects can be structured (record) and dimensioned (array, matrix etc.).

Statements
A statement may be simple or compound. A compound statement may in turn
contain other statements. A label is a "no operation" statement that can be used
to define named (goto) positions in a program. Statements are executed in
succession unless a goto, return, raise, exit, retry, or trynext statement,
or the occurrence of an interrupt or error causes the execution to continue at
another point.
The assignment statement changes the value of a variable, persistent, or parameter.
A procedure call invokes the execution of a procedure after associating any
arguments with corresponding parameters of the procedure. RAPID supports late
binding of procedure names.
The goto statement causes the execution to continue at a position specified by a
label.
The return statement terminates the evaluation of a routine.
The raise statement is used to raise and propagate errors.
The exit statement terminates the evaluation of a task.
The connect statement is used to allocate an interrupt number and associate it
with a trap (interrupt service) routine.
The retry and trynext statements are used to resume evaluation after an error.
The if and test statements are used for selection. The if statement allows the
selection of a statement list based on the value of a condition. The test statement
selects one (or none) of a set of statement lists, depending on the value of an
expression.
The for and while statements are used for iteration. The for statement repeats
the evaluation of a statement list as long as the value of a loop variable is within
a specified value range. The loop variable is updated (with selectable increment)
at the end of each iteration. The while statement repeats the evaluation of a
statement list as long as a condition is met. The condition is evaluated and checked
at the beginning of each iteration.

Continues on next page
Technical reference manual - RAPID kernel 13
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.2 Language summary

Continued

Backward execution
RAPID supports stepwise, backward execution of statements. Backward execution
is very useful for debugging, test and adjustment purposes during RAPID program
development. RAPID procedures may contain a backward handler (statement list)
that defines the backward execution "behavior" of the procedure.

Error recovery
The occurrence of a runtime detected error causes suspension of normal program
execution. The control may instead be passed to a user provided error handler.
An error handler may be included in any routine declaration. The handler can obtain
information about the error and possibly take some actions in response to it. If
desirable, the error handler can return the control to the statement that caused the
error (retry) or to the statement after the statement that caused the error
(trynext) or to the point of the call of the routine. If further execution is not
possible, at least the error handler can assure that the task is given a graceful
abortion.

Undo execution
A routine can be aborted at any point by moving the program pointer out of the
routine. In some cases, when the program is executing certain sensitive routines,
it is unsuitable to abort. Using a undo handler it is possible to protect such sensitive
routines against an unexpected program reset. The undo handler is executed
automatically if the routine is aborted. This code should typically perform clean-up
actions, for example closing a file.

Interrupts
Interrupts occur as a consequence of a user defined (interrupt) condition turning
true. Unlike errors, interrupts are not directly related to (synchronous with) the
execution of a specific piece of the code. The occurrence of an interrupt causes
suspension of normal program execution and the control may be passed to a trap
routine. After necessary actions have been taken in response to the interrupt the
trap routine can resume execution at the point of the interrupt.

Data types
Any RAPID object (value, expression, variable, function etc.) has a data type. A
data type can either be a built-in type or an installed type (compare installed
routines), or a user-defined type (defined in RAPID). Built-in types are a part of the
RAPID language while the set of installed or user-defined types may differ from
site to site.

Note

From the point of view of a user there is no difference between built-in, installed,
and user-defined types.

Continues on next page
14 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.2 Language summary
Continued

There are three kinds of types: atomic types, record types, and alias types. The
definition of an atomic type must be built-in or installed, but a record or alias type
could also be user-defined.

• Atomic types are "atomic" in the sense that they are not defined upon any
other type and they cannot be divided into parts or components.

• Record types are built up by a set of named, ordered components.
• An alias type is by definition equal to another type. Alias types make it

possible to classify data objects.
In addition to the atomic, record, or alias classification of types, each type has a
value class. There are three value classes of types: value types, non-value types,
and semi-value types.

• An object of value type represents some form of value, for example 3.55 or
John Smith).

• A non-value (type) object represents a hidden or encapsulated description
of some physical or logical object, for example a file.

• Semi-value objects have two types, one basic non-value type and one
associated value type that may be used to represent some property of the
non-value type.

Built-in data types
The built-in atomic types are bool, num, dnum, and string.

• bool is an enumerated type with the value true or false, and provides a
means of performing logical and relational computations.

• The num type supports exact and approximate arithmetic computations.
• The string type represents character sequences.

The built-in record types are pos, orient, and pose.
• The pos type represents a position in space (vector).
• The orient type represents an orientation in space.
• The pose type represents a coordinate system (position/orientation

combination).
The built-in alias types are errnum and intnum. Errnum and intnum are both
aliases for num and are used to represent errors and interrupt numbers.
Operations on objects of built-in types are defined by means of arithmetic, relational
and logical operators, and predefined routines.

Installed data types
The concept of installed types supports the use of installed routines by making it
possible to use appropriate parameter types. An installed type can be either an
atomic, record, or alias type.

User-defined data types
The user-defined types make it easier to customize an application program. They
also make it possible to write a RAPID program which is more readable.

Continues on next page
Technical reference manual - RAPID kernel 15
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.2 Language summary

Continued

Placeholders
The concept of placeholders supports structured creation and modification of
RAPID programs. Placeholders may be used by offline and online programming
tools to temporarily represent "not yet defined" parts of a RAPID program. A
program that contains placeholders is syntactically correct and may be loaded to
(and saved from) the task buffer. If the placeholders in a RAPID program do not
cause any semantic errors (see Error classification on page 18), such a program
can even be executed, but any placeholder encountered causes an execution error
(see Error classification on page 18).

16 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.2 Language summary
Continued

1.3 Syntax notation

Context-free syntax
The context-free syntax of the RAPID language is described using a modified
variant of the Backus-Naur Form - EBNF.

• Boldface, upper case words denote reserved words and placeholders, for
example WHILE

• Quoted strings denote other terminal symbols, for example '+'
• Strings enclosed in angle brackets denote syntactic categories, non-terminals,

for example <constant expression>
• The symbol ::= means is defined as, for example <dim> ::= <constant

expression>

• A list of terminals and/or non-terminals denotes a sequence, for example
GOTO<identifier> ';'

• Square brackets enclose optional items. The items may occur zero or one
time, for example <return statement> ::= RETURN [<expression>
] ';'

• The vertical bar separates alternative items, for example OR | XOR

• Braces enclose repeated items. The items may appear zero or more times.
For example <statement list> ::= { <statement> }

• Parentheses are used to hierarchically group concepts together, for example
(OR|XOR)<logical term>

Technical reference manual - RAPID kernel 17
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.3 Syntax notation

1.4 Error classification

Types of errors
Based on the time of detection errors may be divided into static errors or execution
errors.

Static errors
Static errors are detected either when a module is loaded into the task buffer (see
Taskmodules on page121) or before program execution after program modification.

Description of exampleExampleType of error

Exponent out of rangeb := 2E52786;Lexical errors, illegal lexical
elements

Missing FROM keywordFOR i 5 TO 10 DOSyntax errors, violation of the
syntax rules

Data type mismatchVAR num a;Semantic errors, violation of
semantic rules, typically type
errors

a := "John";

Program to complex (nested)-Fatal (system resource) errors

Execution errors
Execution errors occur (are detected) during the execution of a task.

• Arithmetic errors, for example division by zero
• I/O errors, for example no such file or device
• Fatal (system resource) errors, for example execution stack overflow

The error handler concept of RAPID makes it possible to recover from non-fatal
execution errors. See Error recovery on page 97.

18 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

1 Introduction
1.4 Error classification

2 Lexical elements
2.1 Character set

Definition
The RAPID language is constructed using the standard ISO 8859-1 (Latin-1)
character set. In addition newline, tab, and formfeed control characters are
recognized. Everything such as names of modules, variables, folders, etc. must
use symbols from the ISO 8859-1 character set, as defined below.

Supported symbols of ISO 8859-1
The following symbols in ISO 8859-1 are supported:

<character> ::= -- ISO 8859-1 (Latin-1)--

<newline> ::= -- newline control character --

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

<letter> ::= <upper case letter> | <lower case letter>

<upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | Ð | Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | Ý | Þ | ß

<lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | ß | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | ý | þ | ÿ

Technical reference manual - RAPID kernel 19
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.1 Character set

2.2 Lexical units

Definition
A RAPID sentence is a sequence of lexical units, also known as tokens. The RAPID
tokens are:

• identifiers
• reserved words
• literals
• delimiters
• placeholders
• comments

Limitations
Tokens are indivisible. Except for string literals and comments, space must not
occur within tokens.
An identifier, reserved word, or numeric literal must be separated from a trailing,
adjacent identifier, reserved word, or numeric literal by one or more spaces, tabs,
formfeed, or newline characters. Other combinations of tokens may by separated
by one or more spaces, tabs, formfeed, or newline characters.

20 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.2 Lexical units

2.3 Identifiers

Definition
Identifiers are used for naming objects.

<identifier> ::= <ident> | <ID>

<ident> ::= <letter> {<letter> | <digit> | '_'}

Limitations
The maximum length of an identifier is 32 characters.
All characters of an identifier are significant. Identifiers differing only in the use of
corresponding upper and lower case letters are considered the same.
The placeholder <ID> (see Placeholders on page16, and Placeholders on page27)
can be used to represent an identifier.

Technical reference manual - RAPID kernel 21
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.3 Identifiers

2.4 Reserved words

Definition
The words listed below are reserved. They have a special meaning in the RAPID
language and thus must not be used as identifiers.
They may not be used in any context not specially stated by the syntax.
There are also a number of predefined names for data types, system data,
instructions, and functions, that must not be used as identifiers.

CASEBACKWARDANDALIAS

DIVDEFAULTCONSTCONNECT

ENDFORELSEIFELSEDO

ENDPROCENDMODULEENDIFENDFUNC

ENDWHILEENDTRAPENDTESTENDRECORD

FORFALSEEXITERROR

IFGOTOFUNCFROM

MODULEMODLOCALINOUT

ORNOVIEWNOTNOSTEPIN

READONLYRAISEPROCPERS

STEPRETURNRETRYRECORD

TOTHENTESTSYSMODULE

UNDOTRYNEXTTRUETRAP

WITHWHILEVIEWONLYVAR

XOR

22 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.4 Reserved words

2.5 Numerical literals

Definition
A numerical literal represents a numeric value.

<num literal> ::=

<integer> [<exponent>]

| <decimal integer>) [<exponent>]

| <hex integer>

| <octal integer>

| <binary integer>

| <integer> '.' [<integer>] [<exponent>]

| [<integer>] '.' <integer> [<exponent>]

<integer> ::= <digit> {<digit>}

<decimal integer> ::= '0' ('D' | 'd') <integer>

<hex integer> ::= '0' ('X' | 'x') <hex digit> {<hex digit>}

<octal integer> ::= '0' ('O' | 'o') <octal digit> {<octal digit>}

<binary integer> ::= '0' ('B' | 'b') <binary digit> {<binary digit>}

<exponent> ::= ('E' | 'e') ['+' | '-'] <integer>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

<octal digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<binary digit> ::= 0 | 1

Limitations
A numerical literal must be in the range specified by the ANSI IEEE 754 Standard
for Floating-Point Arithmetic.

Example
For example: 7990 23.67 2E6 .27 2.5E-3 38.

Technical reference manual - RAPID kernel 23
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.5 Numerical literals

2.6 Bool literals

Definition
A bool literal represents a logical value.

<bool literal> ::= TRUE | FALSE

24 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.6 Bool literals

2.7 String literals

Definition
A string literal is a sequence of zero or more characters enclosed by the double
quote (") character.

<string literal> ::= '"' { <character> | <character code> } '"'
<character code> ::= '\' <hex digit> <hex digit>

The possibility to use character codes provides a means to include non-printable
characters (binary data) in string literals. If a back slash or double quote character
should be included in a string literal it must be written twice.

Example
"A string literal"

"Contains a "" character"

"Ends with BEL control character\07"

"Contains a \\ character"

Technical reference manual - RAPID kernel 25
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.7 String literals

2.8 Delimiters

Definition
A delimiter is one of the following characters:
{ } () [] , . = < > + -* / : ; ! \ ?
A delimiter can also be one of the following compound symbols:
:= <> >= <=

26 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.8 Delimiters

2.9 Placeholders

Definition
Placeholders can be used by offline and online programming tools to temporarily
represent "not yet defined" parts of a RAPID program. A program that contains
placeholders is syntactically correct and can be loaded to (and saved) from the
task buffer. If the placeholders in a RAPID program does not cause any semantic
errors (see Error classification on page18), such a program can even be executed,
but any placeholder encountered causes an execution error (seeError classification
on page 18).
RAPID recognizes the following placeholders:

DescriptionPlaceholder

(represents a) data type definition<TDN>

(represents a) data declaration<DDN>

routine declaration<RDN>

parameter declaration<PAR>

alternative parameter declaration<ALT>

array dimension<DIM>

statement<SMT>

data object reference (variable, persistent, or parameter)<VAR>

else if clause of if statement<EIT>

case clause of test statement<CSE>

expression<EXP>

procedure call argument<ARG>

identifier<ID>

Technical reference manual - RAPID kernel 27
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.9 Placeholders

2.10 Comments

Definition
A comment starts with an exclamation mark (!) and is terminated by a newline
character. A comment can never include a newline character.
<comment> ::= '!' { <character> | <tab> } <newline>
Comments have no effect on the meaning of a RAPID code sequence; their sole
purpose is to clarify the code to the reader.
Each RAPID comment and may occur either as:

• an element of a type definition list (see data declaration list)
• an element of a record component list (seeComments in a record on page28)
• an element of a data declaration list (see Procedure declarations on page90)
• an element of a routine declaration list (seeModule declarations on page122)
• an element of a statement list (see Statement lists on page 67)

Comments located between the last data declaration (see Data declarations on
page 40) and the first routine declaration (see Routine declarations on page 85)
of a module, are regarded to be a part of the routine declaration list. Comments
located between the last data declaration and the first statement of a routine, are
regarded to be a part of the statement list (see Statement lists on page 67).

Example
! Increase length

length := length + 5;

IF length < 1000 OR length > 14000 THEN

! Out of bounds

EXIT;

ENDIF

...

Comments in a record
In a record definition, it is not allowed to have a comment in a separate line unless
it is the last line.

RECORD my_rec

! DISALLOWED COMMENT

num mynum; ! allowed comment (not separate line)

string mystring;

! allowed comment on last line

ENDRECORD

28 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.10 Comments

2.11 Data types

Definition
A RAPID data type is identified by its name and can be built-in, installed, or
user-defined (defined in RAPID).
<data type> ::= <identifier>

Built-in types are part of the RAPID language while the set of installed or
user-defined types may differ from site to site. The concept of installed types
supports the use of installed routines by making it possible to use appropriate
parameter types. The user-defined types make it possible to prepare understandable
and easy programmable application packets for the application engineer. From
the point of view or the user there is no difference between built-in, installed, and
user-defined types.
There are three different types:

• The atomic data types on page 31
• The record data types on page 33
• The alias data types on page 36

A type definition introduces an alias or a record by associating an identifier with a
description of a data type. A type definition can be represented by the placeholder
<TDN>.

<type definition> ::=

[LOCAL] (<record definition> | <alias definition>)

| <comment>

| <TDN>

Type definitions can occur in the heading section of modules (see Task modules
on page 121).
The optional local directive classifies the data object being local, otherwise global
(see Scope rules for data objects on page 43).

Example

Record definition
LOCAL RECORD object

num usecount;

string name;

ENDRECORD

Alias definition
ALIAS num another_num;

Definition for placeholder
<TDN>

Technical reference manual - RAPID kernel 29
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.11 Data types

2.12 Scope rules for data types

Definition
The scope of a type definition denotes the area in which the type is visible and is
determined by the context and position of its declaration.
The scope of a predefined type comprises any RAPID module.
A user-defined type is always defined inside a module. The following scope rules
are valid for module type definitions:

• The scope of a local module type definition comprises the module in which
it is contained.

• The scope of a global module type definition in addition comprises any other
module in the task buffer.

• Within its scope a module type definition hides any predefined type with the
same name.

• Within its scope a local module type definition hides any global module type
with the same name.

• Two module objects declared in the same module may not have the same
name.

• Two global objects declared in two different modules in the task buffer may
not have the same name.

30 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.12 Scope rules for data types

2.13 The atomic data types

Definition
The atomic data types are "atomic" in the sense that they are not defined upon
any other type and cannot be divided into parts or components. The internal
structure (implementation) of an atomic type is hidden.
The built-in atomic types are the numeric types num and dnum, the logical type
bool, and the text type string.

The type num

A num object represents a numeric value. The num type denotes the domain
specified by the ANSI IEEE 754 Standard for Floating-Point Arithmetic.
Within the subdomain -8388607 to (+)8388608, num objects may be used to
represent integer (exact) values. The arithmetic operators +, -, and * (seeOperators
on page 63) preserves integer representation as long as operands and result are
kept within the integer subdomain of num.

Examples with num

DescriptionExample

declaration of a variableVAR num counter;

num literal usagecounter := 250;

The type dnum

A dnum object represents a numeric value. The dnum type denotes the domain
specified by the ANSI IEEE 754 Standard for Floating-Point Arithmetic.
Within the subdomain -4503599627370496 to (+)4503599627370496, dnum objects
may be used to represent integer (exact) values. The arithmetic operators +, -, and
* (seeOperators on page63) preserves integer representation as long as operands
and result are kept within the integer subdomain of dnum.

Examples with dnum

DescriptionExample

declaration of a variableVAR dnum value;

dnum literal usagevalue := 2E+43;

The type bool

A bool object represents a logical value.
The bool type denotes the domain of two-valued logic, TRUE or FALSE.

Examples with bool

DescriptionExample

declaration of a variableVAR bool active;

bool literal usageactive := TRUE;

Continues on next page
Technical reference manual - RAPID kernel 31
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.13 The atomic data types

The type string

A string object represents a character string.
The string type denotes the domain of all sequences of graphical characters
(ISO 8859-1) and control characters (non ISO 8859-1 characters in the numeric
code range 0 .. 255). A string may consist of 0 to 80 characters (fixed 80 characters
storage format).

Examples with string

DescriptionExample

declaration of a variableVAR string name;

dnum literal usagename := "John
Smith";

32 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.13 The atomic data types
Continued

2.14 The record data types

Definition
A record data type is a composite type with named, ordered components. The
value of a record type is a composite value consisting of the values of its
components. A component can have atomic type or record type.
The built-in record types are pos, orient, and pose. The available set of installed
and user-defined record types is by definition not bound by the RAPID specification.

Record definition
A record type is introduced by a record definition.

<record definition> ::=

RECORD <identifier> <record component list>

ENDRECORD

<record component list> ::=

<record component definition> | <record component definition>
<record component list>

<record component definition> ::=

<data type> <record component name> ';'

For example:
RECORD newtype

num x;

ENDRECORD

Record value
A record value can be expressed using an aggregate representation.
The following example shows the aggregate value for a pos record.

[300, 500, depth]

Assigning values to components
A specific component of a record data object can be accessed by using the name
of the component.
The following example assigns a value to the x-component of the pos variable p1.

p1.x := 300;

Default domain
Unless otherwise stated the domain of a record type is the Cartesian product of
the domains of its components.

Comments in a record
In a record definition, it is not allowed to have a comment in a separate line unless
it is the last line.

RECORD my_rec

! DISALLOWED COMMENT

num mynum; ! allowed comment (not separate line)

string mystring;

! allowed comment on last line

Continues on next page
Technical reference manual - RAPID kernel 33
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.14 The record data types

ENDRECORD

The type pos

A pos object represents a vector (position) in 3D space. The pos type has three
components, [x, y, z].

DescriptionData typeComponent

x-axis component of positionnumx

y-axis component of positionnumy

z-axis component of positionnumz

Examples with pos

DescriptionExample

declaration of a variableVAR pos p1;

aggregate usagep1 := [10, 10, 55.7];

component usagep1.z := p1.z + 250;

operator usagep1 := p1 + p2;

The type orient

An orient object represents an orientation (rotation) in 3D space. The orient

type has four components, [q1, q2, q3, q4].

DescriptionData typeComponent

first quaternion componentnumq1

second quaternion componentnumq2

third quaternion componentnumq3

fourth quaternion componentnumq4

The quaternion representation is the most compact way to express an orientation
in space. Alternate orientation formats (for example Euler angles) can be specified
using predefined functions available for this purpose.

Examples with orient

DescriptionExample

declaration of a variableVAR orient o1;

aggregate usageo1 := [1, 0, 0, 0];

component usageo1.q1 := -1;

function usageo1 := Euler(a1,b1,g1);

The type pose

A pose object represents a 3D frame (coordinate system) in 3D-space. The pose

type has two components, [trans, rot].

DescriptionData typeComponent

origin of translationpostrans

Continues on next page
34 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.14 The record data types
Continued

DescriptionData typeComponent

rotationorientrot

Examples with pose

DescriptionExample

declaration of a variableVAR pose p1;

aggregate usagep1 := [[100, 100, 0], o1];

component usagep1.trans := homepos;

Technical reference manual - RAPID kernel 35
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.14 The record data types

Continued

2.15 The alias data types

Definition
An alias data type is defined as being equal to another type. The alias types provide
a means to classify objects. The system may use the alias classification to look
up and present type related objects.
An alias type is introduced by an alias definition.

<alias definition> ::=

ALIAS <type name> <identifier> ';'

Note

One alias type cannot be defined upon another alias type. The built-in alias types
are errnum and intnum - both are alias for num.

Examples with alias

DescriptionExample

The type newtype is alias for numALIAS num newtype;

Usage of alias type level (alias for num)CONST level low := 2.5;

CONST level high := 4.0;

The type errnum

The errnum type is an alias for num and is used for the representation of error
numbers.

The type intnum

The intnum type is an alias for num and is used for the representation of interrupt
numbers.

36 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.15 The alias data types

2.16 Data type value classes

Definition
With respect to the relation between object data type and object value, data types
can be classified as being either:

• value data type
• non-value (private) data type
• semi-value data type

The basic value types are the built-in atomic types num, dnum, bool, and string.
A record type with all components being value types is itself a value type, for
example the built-in types pos, orient, and pose. An alias type defined upon a
value type is itself a value type, for example the built-in types errnum and intnum.
A record type having at least one semi-value component and all other components
have value type is itself a semi-value type. An alias type defined upon a semi-value
type is itself a semi-value type.
All other types are non-value types, for example record types with at least one
non-value component and alias types defined upon non-value types.
Arrays have the same value class as the element value class.

Value data type
An object of value type is simply considered to represent some form of "value" (for
example 5, [10, 7, 3.25], "John Smith", TRUE). A non-value (type) object instead
represents a hidden/encapsulated description (descriptor) of some physical or
logical object, for example the iodev (file) type.

Non-value data type
The content ("value") of non-value objects can only be modified using installed
routines ("methods"). Non-value objects may in RAPID programs only be used as
arguments to var or ref parameters.
For example: Use of non-value object logfile

VAR iodev logfile;

...

! Open logfile

Open "flp1:LOGDIR" \File := "LOGFILE1.DOC ", logfile;

...

! Write timestamp to logfile

Write logfile, "timestamp = " + GetTime();

Semi-value data type
Semi-value objects are special. They have two types, one "basic" non-value type
and one associated (value) type that may be used to represent some property of
the non-value type. RAPID views a semi-value object as a value object when used
in value context (see table below) and a non-value object otherwise. The semantics
(meaning/result) of a read or update (value) operation performed upon a semi-value
type is defined by the type itself.

Continues on next page
Technical reference manual - RAPID kernel 37
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.16 Data type value classes

For example: Use of semi-value object sig1 in value context (the associated type
of signaldi is num).

VAR signaldi sig1;

...

! use digital input sig1 as value object

IF sig1 = 1 THEN

...

...

! use digital input sig1 as non-value object

IF DInput(sig1) = 1 THEN

...

Note that a semi-value object (type) can reject either reading or updating "by value".
For example, the following assignment will be rejected by sig1 since sig1

represents an input device.
VAR signaldi sig1;

...

sig1 := 1;

Possible and impossible combinations of object usage and type value class
The tables below show which combinations of object usage and type value class
that are possibly legal ("X" in the tables) and which are impossible or illegal ("-" in
the tables).

Semi-valueNon-valueValueObject declaration

N.A.-XConstant

N.A.-XPersistent

N.A.-XVariable with initialization

XXXVariable without initialization

--XRoutine parameter: in

XXXRoutine parameter: var

--XRoutine parameter: pers

XXXRoutine parameter: ref (only in-
stalled routines)

--XRoutine parameter: inout var

--XRoutine parameter: inout pers

--XFunction return value

Semi-valueNon-valueValueObject reference

X ii-XAssignment i

X iiiX iiiXAssignment

X ii-XAssignment iv

i See more about targets in Assignment statement on page 69, and The Connect statement on
page 78.

ii The associated type (value) is used.
iii Argument to var or ref parameter.
iv Object used in expression.

38 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.16 Data type value classes
Continued

2.17 Equal type

Definition
The types of two objects are equal if the objects have the same structure (degree,
dimension, and number of components) and either:

• Both objects have the same type name (any alias type name included is first
replaced by its definition type).

• One of the objects is an aggregate (array or record) and the types of (all)
corresponding elements/components are equal.

• One of the objects has a value type, the other object has a semi-value type
and the type of the first object and the associated type of the semi-value
object are equal. Note that this is only valid in value context.

Technical reference manual - RAPID kernel 39
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.17 Equal type

2.18 Data declarations

Definition
There are four kinds of data objects:

• constant, CONST
• variable, VAR
• persistent, PERS
• parameter

Except for predefined data objects (see Predefined data objects on page 42) and
for loop variables (see The For statement on page 81) all data objects must be
declared. A data declaration introduces a constant, a variable, or a persistent by
associating an identifier with a data type. See Parameter declarations on page 86
for information on parameter declarations.
A data declaration can be represented by the placeholder <DDN>.

<data declaration> ::=

[LOCAL] (<variable declaration> | <persistent declaration> |
<constant declaration>)

| TASK (<variable declaration> | <persistent declaration>

| <comment>

| <DDN>

About persistent data objects
A persistent (data object) can be described as a "persistent" variable. While a
variable value is lost (re-initialized) at the beginning of each new session - at module
load (module variable) or routine call (routine variable) - a persistent keeps its
value between sessions. This is accomplished by letting an update of the value of
a persistent automatically lead to an update of the initialization value of the
persistent declaration. When a module (or task) is saved, the initialization value of
any persistent declaration reflects the current value of the persistent. In addition,
the persistent data objects are stored in a system public "database" and can be
accessed (updated, referenced) by other components of the control system.

Declarations and accessibility
Data declarations can occur in the heading section of modules (see Task modules
on page 121) and routines (see Routine declarations on page 85).
The optional local directive classifies the data object being local, otherwise global
(see Scope rules for data objects on page 43). Note that the local directive only
may be used at module level (not inside a routine).
The optional task directive classifies persistent data objects and variable data
objects being task global as opposed to system global. In the scope rules there is
no difference between the two global types.
However the current value of a task global persistent will always be unique to the
task and not shared among other tasks. System global persistents in different tasks
share current value if they are declared with the same name and type.

Continues on next page
40 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.18 Data declarations

Declaring a variable as task global will only be effective in a module that is installed
shared. System global variables in loaded or installed modules are already unique
to the task and not shared among other tasks.

Note

The task directive only may be used at module level (not inside a routine).

Examples

DescriptionExample

declaration of variableLOCAL VAR num counter;

declaration of constantCONST num maxtemp := 39.5;

declaration of persistentPERS pos refpnt := [100.23, 778.55,
1183.98];

declaration of persistentTASK PERS num lasttemp := 19.2;

declaration placeholder<DDN>

Technical reference manual - RAPID kernel 41
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.18 Data declarations

Continued

2.19 Predefined data objects

Definition
A predefined data object is supplied by the system and is always available.
Predefined data objects are automatically declared and can be referenced from
any module. See Built-in data objects on page 139.

42 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.19 Predefined data objects

2.20 Scope rules for data objects

Definition
The scope of a data object denotes the area in which the object is visible and is
determined by the context and position of its declaration.
The scope of a predefined data object comprises any RAPID module.

Module data object
A data object declared outside any routine is called a module data object (module
variable, module constant or persistent). The following scope rules are valid for
module data objects:

• The scope of a local module data object comprises the module in which it is
contained.

• The scope of a global module data object in addition comprises any other
module in the task buffer.

• Within its scope a module data object hides any predefined object with the
same name.

• Within its scope a local module data object hides any global module object
with the same name.

• Two module objects declared in the same module may not have the same
name.

• Two global objects declared in two different modules in the task buffer may
not have the same name.

• A global data object and a module may not share the same name.

Routine data object
A data object declared inside a routine is called a routine data object (routine
variable or routine constant). Note that the concept of routine data objects in this
context also comprises routine parameters (seeParameter declarations on page86).
The following scope rules are valid for routine data objects:

• The scope of a routine data object comprises the routine in which it is
contained.

• Within its scope a routine data object hides any predefined or user defined
object with the same name.

• Two routine data objects declared in the same routine may not have the
same name.

• A routine data object may not have the same name as a label declared in the
same routine.

• See Routine declarations on page 85 and Task modules on page 121 for
information on routines and task modules.

Technical reference manual - RAPID kernel 43
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.20 Scope rules for data objects

2.21 Storage class

Definition
The storage class of a data object determines when the system allocates and
de-allocates memory for the data object. The storage class of a data object is
determined by the kind of data object and the context of its declaration and can
be either static or volatile.
Constants, persistents, and module variables are static. The memory needed to
store the value of a static data object is allocated when the module that declares
the object is loaded (see Task modules on page 121). This means that any value
assigned to a persistent or a module variable always remains unchanged until the
next assignment.
Routine variables (and in parameters, see Parameter declarations on page86) are
volatile. The memory needed to store the value of a volatile object is allocated first
upon the call of the routine in which the declaration of the variable is contained.
The memory is later de-allocated at the point of the return to the caller of the routine.
This means that the value of a routine variable is always undefined before the call
of the routine, and is always lost (becomes undefined) at the end of the execution
of the routine.
In a chain of recursive routine calls (a routine calling itself directly or indirectly)
each instance of the routine receives its own memory location for the "same"
routine variable - a number of instances of the same variable are created.

44 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.21 Storage class

2.22 Variable declarations

Definition
A variable is introduced by a variable declaration.

<variable declaration> ::=

VAR <data type> <variable definition> ';'

<variable definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}'] [':=' <constant
expression>]

<dim> ::= <constant expression>

For example:
VAR num x;

VAR pos curpos := [b+1, cy, 0];

As described in Data declarations on page 40, variables can be declared as local,
task, or system global.

Declaring array variables
Variables of any type (including installed types) can be given an array (of degree
1, 2, or 3) format by adding dimension information to the declaration. The dimension
expression must represent an integer value (see The type num on page31) greater
than 0.
For example:

! pos (14 x 18) matrix

VAR pos pallet{14, 18};

Declaring value type variables
Variables with value types (see Data type value classes on page 37) may be
initialized (given an initial value). The data type of the constant expression used
to initialize a variable must be equal to the variable type.
For example:

VAR string author_name := "John Smith";

VAR pos start := [100, 100, 50];

VAR num maxno{10} := [1, 2, 3, 9, 8, 7, 6, 5, 4, 3];

Initial value for un-initialized variables
An un-initialized variable (or variable component/element) receives the following
initial value.

Initial valueData type

0num (or alias for num)

0dnum (or alias for dnum)

FALSEbool (or alias for bool)

""string (or alias for string)

all bits 0'edInstalled atomic types

Technical reference manual - RAPID kernel 45
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.22 Variable declarations

2.23 Persistent declarations

Definition
A persistent is introduced by a persistent declaration. Note that persistents can
only be declared at module level (not inside a routine). A persistent can be given
any value data type.

<persistent declaration> ::=

PERS <data type> <persistent definition> ';'

<persistent definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}'] [':=' <literal
expression>]

Note

The literal expression may only be omitted for system global persistents.

For example:
PERS num pcounter := 0;

Declaring array persistents
Persistents of any type (including installed types) can be given an array (of degree
1, 2, or 3) format by adding dimension information to the declaration. The dimension
expression must represent an integer value (see The type num on page31) greater
than 0.
For example:

! 2 x 2 matrix

PERS num grid{2, 2} := [[0, 0], [0, 0]];

Initial value for persistents
As described in Data declarations on page40, persistents can be declared as local,
task global or system global. Local and task global persistents must be initialized
(given an initial value). For system global persistents the initial value may be
omitted. The data type of the literal expression used to initialize a persistent must
be equal to the persistent type. Note that an update of the value of a persistent
automatically leads to an update of the initialization expression of the persistent
declaration (if not omitted).
For example:

MODULE ...

PERS pos refpnt := [0, 0, 0];

...

refpnt := [x, y, z];

...

ENDMODULE

If the value of the variables x, y, and z at the time of execution is 100.23, 778.55,
and 1183.98 respectively and the module is saved, the saved module will look like
this:

MODULE ...

PERS pos refpnt := [100.23, 778.55, 1183.98];

Continues on next page
46 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.23 Persistent declarations

...

refpnt := [x, y, z];

...

ENDMODULE

Initial value for un-initalized persistents
A persistent without initial value (or persistent component/element) receives the
following initial value.

Initial valueData type

0num (or alias for num)

0dnum (or alias for dnum)

FALSEbool (or alias for bool)

""string (or alias for string)

all bits 0'edInstalled atomic types

Technical reference manual - RAPID kernel 47
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.23 Persistent declarations

Continued

2.24 Constant declarations

Definition
A constant represents a static value and is introduced by a constant declaration.
The value of a constant cannot be modified. A constant can be given any value
data type.

<constant declaration> ::=

CONST <data type> <constant definition> ';'

<constant definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}'] ':=' <constant
expression>

<dim> ::= <constant expression>

For example:
CONST num pi := 3.141592654;

CONST num siteno := 9;

Declaring array constants
A constant of any type (including installed types) can be given an array (of degree
1, 2 or 3) format by adding dimensioning information to the declaration. The
dimension expression must represent an integer value (see The type num on
page 31) greater than 0. The data type of the constant value must be equal to the
constant type.
For example:

CONST pos seq{3} := [[614, 778, 1020], [914, 998, 1021], [814, 998,
1022]];

48 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

2 Lexical elements
2.24 Constant declarations

3 Expressions
3.1 Introduction to expressions

Definition
An expression specifies the evaluation of a value. An expression can be represented
by the placeholder <EXP>.

<expression> ::=

<expr>

| <EXP>

<expr> ::= [NOT] <logical term> { (OR | XOR) <logical term> }

<logical term> ::= <relation> { AND <relation> }

<relation> ::= <simple expr> [<relop> <simple expr>]

<simple expr> ::= [<addop>] <term> { <addop> <term> }

<term> ::= <primary> { <mulop> <primary> }

<primary> ::=

<literal>

| <variable>

| <persistent>

| <constant>

| <parameter>

| <function call>

| <aggregate>

| '(' <expr> ')'

<relop> ::= '<' | '<=' | '=' | '>' | '>=' | '<>'

<addop> ::= '+' | '-'

<mulop> ::= '*' | '/' | DIV | MOD

Evaluation order
The relative priority of the operators determines the order in which they are
evaluated. Parentheses provide a means to override operator priority. The rules
above imply the following operator priority:

OperatorsPriority

* / DIV MODHighest

+ -

< > <> <= >= =

AND

XOR OR NOTLowest

An operator with high priority is evaluated prior to an operator with low priority.
Operators of the same priority are evaluated from left to right.

CommentEvaluation orderExample expression

Left to right rule(a + b) + ca + b + c

* higher than +a + (b * c)a + b * c

Left to right rule(a OR b) OR ca OR b OR c

Continues on next page
Technical reference manual - RAPID kernel 49
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.1 Introduction to expressions

CommentEvaluation orderExample expression

AND higher than OR(a AND b) OR (c AND d)a AND b OR c AND d

< higher than AND(a < b) AND (c < d)a < b AND c < d

A binary operator is an operator that takes two operands, that is +, -, * etc. The left
operand of a binary operator is evaluated prior to the right operand. Note that the
evaluation of expressions involving AND and OR operators is optimized so that
the right operand of the expression will not be evaluated if the result of the operation
can be determined after the evaluation of the left operand.

50 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.1 Introduction to expressions
Continued

3.2 Constant expressions

Definition
Constant expressions are used to represent values in data declarations.

<constant expression> ::= <expression>

Note

A constant expression is a specialization of an ordinary expression. It may not
at any level contain variables, persistents or function calls!

Examples
CONST num radius := 25;

CONST num pi := 3.141592654;

! constant expression

CONST num area := pi * radius * radius;

Technical reference manual - RAPID kernel 51
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.2 Constant expressions

3.3 Literal expressions

Definition
Literal expressions are used to represent initialization values in persistent
declarations.

<literal expression> ::= <expression>

A literal expression is a specialization of an ordinary expression. It may only contain
either a single literal value (+ or - may precede a numerical literal) or a single
aggregate with members that in turn are literal expressions.

Examples
PERS pos refpnt := [100, 778, 1183];

PERS num diameter := 24.43;

52 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.3 Literal expressions

3.4 Conditional expressions

Definition
Conditional expressions are used to represent logical values.

<conditional expression> ::= <expression>

A conditional expression is a specialization of an ordinary expression. The resulting
type must be bool (true or false).

Examples
counter > 5 OR level < 0

Technical reference manual - RAPID kernel 53
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.4 Conditional expressions

3.5 Literals

Definition
A literal is a lexical element (indivisible) that represents a constant value of a
specific data type.

<literal> ::=

<num literal>

| <string literal>

Examples

DescriptionExample

numerical literals0.5, 1E2

string literal"limit"

bool literalTRUE

54 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.5 Literals

3.6 Variables

Definition
Depending on the type and dimension of a variable it may be referenced in up to
three different ways. A variable reference may mean the entire variable, an element
of a variable (array), or a component of a variable (record).

<variable> ::=

<entire variable>

| <variable element>

| <variable component>

A variable reference denotes, depending on the context, either the value or the
location of the variable.

Entire variable
An entire variable is referenced by the variable identifier.

<entire variable> ::= <ident>

If the variable is an array the reference denotes all elements. If the variable is a
record the reference denotes all components.

Note

The placeholder <ID> (see Identifiers on page 21) cannot be used to represent
an entire variable.

VAR num row{3};

VAR num column{3};

...

! array assignment

row := column;

Variable element
An array variable element is referenced using the index number of the element.

<variable element> ::= <entire variable> '{' <index list> '}'

<index list> ::= <expr> { ',' <expr> }

An index expression must represent an integer value (see The type num on page31)
greater than 0. Index value 1 selects the first element of an array. An index value
may not violate the declared dimension. The number of elements in the index list
must fit the declared degree (1, 2, or 3) of the array.

DescriptionExample

Reference of the tenth element of columncolumn{10}

Reference of matrix elementmat{i * 10, j}

Variable component
A record variable component is referenced using the component name (names).

<variable component> ::= <variable> '.' <component name>

<component name> ::= <ident>

Continues on next page
Technical reference manual - RAPID kernel 55
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.6 Variables

Note

The placeholder <ID> (see Identifiers on page 21) cannot be used to represent
a component name.

56 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.6 Variables
Continued

3.7 Persistents

Definition
A persistent reference may mean the entire persistent, an element of a persistent
(array) or a component of a persistent (record).

<persistent> ::=

<entire persistent>

| <persistent element>

| <persistent component>

The rules concerning persistent references comply with the rules concerning
variable references, see Variables on page 55.

Technical reference manual - RAPID kernel 57
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.7 Persistents

3.8 Constants

Definition
A constant reference may mean the entire constant, an element of a constant
(array) or a component of a constant (record).

<constant> ::=

<entire constant>

| <constant element>

| <constant component>

The rules concerning constant references comply with the rules concerning variable
references, see Variables on page 55.

58 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.8 Constants

3.9 Parameters

Definition
A parameter reference may mean the entire parameter, an element of a parameter
(array) or a component of a parameter (record).

<parameter> ::=

<entire parameter>

| <parameter element>

| <parameter component>

The rules concerning parameter references comply with the rules concerning
variable references, see Variables on page 55.

Technical reference manual - RAPID kernel 59
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.9 Parameters

3.10 Aggregates

Definition
An aggregate denotes a composite value, which is an array or record value. Each
aggregate member is specified by an expression.

<aggregate> ::= '[' <expr> { ',' <expr> } ']'

DescriptionExample

pos aggregate[x, y, 2*x]

string array aggregate["john", "eric", "lisa"]

pos array aggregate[[100, 100, 0], [0, 0, z]]

num matrix (2*3) aggregate[[1, 2, 3], [a, b, c]]

Data type for aggregates
The data type of an aggregate is (must be able to be) determined by the context.
The data type of each aggregate member must be equal to the type of the
corresponding member of the determined type.
In the following example, the IF clause is illegal since the data type of neither of
the aggregates can be determined by the context.

VAR pos p1;

! Aggregate type pos - determined by p1

p1 := [1, -100, 12];

IF [1,-100,12] = [a,b,b] THEN

...

60 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.10 Aggregates

3.11 Function calls

Definition
A function call initiates the evaluation of a specific function and receives the value
returned by the function. Functions can be either predefined or user defined.

<function call> ::= <function> '(' [<function argument list>]
')'

<function> ::= <ident>

Arguments
The arguments of a function call is used to transfer data to (and possibly from) the
called function. Arguments are evaluated from left to right. The data type of an
argument must be equal to the type of the corresponding parameter (see Parameter
declarations on page 86) of the function. An argument may be required, optional,
or conditional. Optional arguments may be omitted but the order of the (present)
arguments must be the same as the order of the parameters. Two or more
parameters may be declared to mutually exclude each other, in which case at most
one of them may be present in the argument list. Conditional arguments are used
to support smooth propagation of optional arguments through chains of routine
calls.

<function argument list> ::=

<first function argument> { <function argument> }

<first function argument> ::=

<required function argument>

| <optional function argument>

| <conditional function argument>

<function argument> ::=

',' <required function argument>

| <optional function argument>

| ',' <optional function argument>

| <conditional function argument>

| ',' <conditional function argument>

<required function argument> ::=

[<ident> ':='] <expr>

<optional function argument> ::=

'\' <ident> [':=' <expr>]

<conditional function argument> ::=

'\' <ident> '?' <parameter>

Required arguments
A required argument is separated from a proceeding (if any) argument by ",". The
parameter name may be included, or left out.

DescriptionExample

two required argumentspolar(3.937, 0.785398)

using namespolar(dist := 3.937, angle := 0.785398)

Continues on next page
Technical reference manual - RAPID kernel 61
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.11 Function calls

Optional or conditional arguments
An optional or conditional argument is preceded by '\' and the parameter name.
The specification of the parameter name is mandatory. Switch (see Parameter
declarations on page 86) type arguments are somewhat special; they are used
only to signal presence (of an argument). Switch arguments do therefore not include
any argument expression. Switch arguments may be propagated using the
conditional syntax.

DescriptionExample

one required argumentcosine(45)

one required argument and one switch (op-
tional)

cosine(0.785398\rad)

one required argumentdist(pnt:=p2)

one required argument and one optionaldist(\base:=p1, pnt:=p2)

A conditional argument is considered to be "present" if the specified optional
parameter (of the calling function) is present (see Parameter declarations on
page 86), otherwise it is simply considered to be "omitted". Note that the specified
parameter must be optional.
For example, distance := dist(\base ? b, p); is interpreted as distance
:= dist(\base := b, p); if the optional parameter b is present otherwise as
distance := dist(p);

The concept of conditional arguments thus eliminates the need for multiple
"versions" of routine calls when dealing with propagation of optional parameters.
For example:

IF Present(b) THEN

distance := dist(\base:=b, p);

ELSE

distance := dist(p);

ENDIF

More than one conditional argument may be used to match more than one
alternative of mutually excluding parameters (see Parameter declarations on
page 86). In that case at most one of them may be "present" (may refer a present
optional parameter).
For example the function FUNC bool check (\switch on | switch off,
thus may be called as check(\on ? high \ off ? low, if at most one of the
optional parameters high and low are present.

Parameter list
The parameter list (see Parameter declarations on page 86) of a function assigns
each parameter an access mode. The access mode of a parameter puts restrictions
on a corresponding argument and specifies how RAPID transfers the argument.
SeeRoutine declarations on page85, for the full description on routine parameters,
access modes, and argument restrictions.

62 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.11 Function calls
Continued

3.12 Operators

Definition
The available operators can be divided into four classes.

• Multiplying operators
• Adding operators
• Relational operators
• Logical operators

The following tables specify the legal operand types and the result type of each
operator. Note that the relational operators = and <> are the only operators valid
for arrays. The use of operators in combination with operands of types not equal
to (see Equal type on page 39) the types specified below will cause a type error
(see Error classification on page 18).

Multiplication operators

Result typeOperand typesOperationOperator

num inum * nummultiplication*

dnum idnum * dnummultiplication*

posnum * pos or pos * numscalar vector multiplication*

pospos * posvector product*

orientorient * orientlinking of rotations*

numnum / numdivision/

dnumdnum / dnumdivision/

pospos / numscalar vector division/

numnum DIV num iinteger divisionDIV

dnumdnum DIV dnum iiinteger divisionDIV

numnum MOD num iinteger modulo; remainderMOD

dnumdnum MOD dnum iiinteger modulo; remainderMOD
i Must represent an integer value.
ii dnum must represent a positive integer value (≥0).

Addition operators

Result typeOperand typesOperationOperator

num inum + numaddition+

dnum idnum + numaddition+

same ii , i+num or dnum or +posunary plus; keep sign+

pospos + posvector addition+

stringstring + stringstring concatenation+

num inum - numsubtraction-

dnum idnum - dnumsubtraction-

Continues on next page
Technical reference manual - RAPID kernel 63
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.12 Operators

Result typeOperand typesOperationOperator

same ii, i-num or -dnum or -posunary minus; change sign-

pospos - posvector subtraction-
i Preserves integer (exact) representation as long as operands and result are kept within the integer

sub-domain of the numerical type.
ii The result receives the same type as the operand. If the operand has an alias data type, the result

receives the alias "base" type (num, dnum or pos).

Relational operators

Result typeOperand typesOperationOperator

boolnum < numless than<

booldnum < dnumless than<

boolnum <= numless than or equal to<=

booldnum <= dnumless than or equal to<=

boolany i = anyequal to=

boolnum >= numgreater than or equal to>=

booldnum >= dnumgreater than or equal to>=

boolnum > numgreater than>

booldnum > dnumgreater than or equal to>

boolany <> anynot equal to<>
i Only value data types. Operands must have equal types.

Logical operators

Result typeOperand typesOperationOperator

boolbool AND boolandAND

boolbool XOR boolexclusive orXOR

boolbool OR boolorOR

boolNOT boolunary not; negationNOT

64 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

3 Expressions
3.12 Operators
Continued

4 Statements
4.1 Introduction to statements

Definition
The concept of using installed routines (and types) to support the specific needs
of the robot application programmer has made it possible to limit the number of
RAPID statements to a minimum. The RAPID statements support general
programming needs and there are really no robot model specific RAPID statements.
Statements may only occur inside a routine definition.

<statement> ::=

<simple statement>

| <compound statement>

| <label>

| <comment>

| <SMT>

Simple or compound statements
A statement is either simple or compound. A compound statement may in turn
contain other statements. A label is a "no operation" statement that can be used
to define named (Goto) positions in a program. The placeholder <SMT> can be
used to represent a statement.

<simple statement> ::=

<assignment statement>

| <procedure call>

| <goto statement>

| <return statement>

| <raise statement>

| <exit statement>

| <retry statement>

| <trynext statement>

| <connect statement>

<compound statement> ::=

<if statement>

| <compact if statement>

| <for statement>

| <while statement>

| <test statement>

Technical reference manual - RAPID kernel 65
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.1 Introduction to statements

4.2 Statement termination

Definition
Compound statements (except for the compact if statement) are terminated by
statement specific keywords. Simple statements are terminated by a semicolon
(;). Labels are terminated by a colon (:). Comments are terminated by a newline
character (see Comments on page 28). Statement terminators are considered to
be a part of the statement.

DescriptionExample
WHILE index < 100 DO

newline terminates a comment! Loop start

":" terminates a labelnext:

";" terminates assignment statementindex := index + 1;

"endwhile" terminates the while statementENDWHILE

66 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.2 Statement termination

4.3 Statement lists

Definition
A sequence of zero or more statements is called a statement list. The statements
of a statement list are executed in succession unless a goto, return, raise,
exit, retry, or trynext statement, or the occurrence of an interrupt or error
causes the execution to continue at another point.

<statement list> ::= { <statement> }

Both routines and compound statements contain statement lists. There are no
specific statement list separators. The beginning and end of a statement list is
determined by the context.

DescriptionExample
IF a > b THEN

start of statement listpos1 := a * pos2;

! this is a comment

end of statement listpos2 := home;

ENDIF

Technical reference manual - RAPID kernel 67
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.3 Statement lists

4.4 Label statement

Definition
Labels are "no operation" statements used to define named program positions.
The goto statement (see The Goto statement on page 72) causes the execution
to continue at the position of a label.

<label> ::= <identifier> ':'

For example
next:

...

GOTO next;

Scope rules for labels
The following scope rules are valid for labels.

• The scope of a label comprises the routine in which it is contained.
• Within its scope a label hides any predefined or user defined object with the

same name.
• Two labels declared in the same routine may not have the same name.
• A label may not have the same name as a routine data object declared in the

same routine.

68 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.4 Label statement

4.5 Assignment statement

Definition
The assignment statement is used to replace the current value of a variable,
persistent or parameter (assignment target) with the value defined by an expression.
The assignment target and the expression must have equal types. Note that the
assignment target must have value or semi-value data type (see Data type value
classes on page37). The assignment target can be represented by the placeholder
<VAR>.

<assignment statement> ::= <assignment target> ':=' <expression>
';'

<assignment target> ::=

<variable>

| <persistent>

| <parameter>

| <VAR>

Examples

DescriptionExample

entire variable assignmentcount := count +1;

component assignmenthome.x := x * sin(30);

array element assignmentmatrix{i, j} := temp;

array element/componentposarr{i}.y := x;

placeholder useassignment <VAR> := temp + 5;

Technical reference manual - RAPID kernel 69
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.5 Assignment statement

4.6 Procedure call

Definition
A procedure call initiates the evaluation of a procedure. After the termination of
the procedure the evaluation continues with the subsequent statement. Procedures
can be either predefined or user defined. The placeholder <ARG> may be used to
represent an undefined argument.

<procedure call> ::= <procedure> [<procedure argument list>] ';'

<procedure> ::=

<identifier>

| '%' <expression> '%'

<procedure argument list> ::=

<first procedure argument> { <procedure argument> }

<first procedure argument> ::=

<required procedure argument>

| <optional procedure argument>

| <conditional procedure argument>

| <ARG>

<procedure argument> ::=

',' <required procedure argument>

| <optional procedure argument>

| ',' <optional procedure argument>

| <conditional procedure argument>

| ',' <conditional procedure argument>

| ',' <ARG>

<required procedure argument> ::=

[<identifier> ':='] <expression>

<optional procedure argument> ::=

'\' <identifier> [':=' <expression>]

<conditional procedure argument> ::=

'\' <identifier> '?' (<parameter> | <VAR>)

Procedure name
The procedure (name) may either be statically specified by using an identifier (early
binding) or evaluated during runtime from a (string type) expression (late binding).
Even though early binding should be considered to be the "normal" procedure call
form, late binding sometimes provides very efficient and compact code.
The following example shows early binding compared to late binding.

Late bindingEarly binding

Example 1:TEST product_id CASE 1:
proc1 x, y, z; % "proc" + NumToStr(product_id, 0) % x, y, z;

...CASE 2:
proc2 x, y, z; Example 2:

CASE 3:
...

VAR string procname {3} := ["proc1", "proc2",
"proc3"];

...

% procname{product_id} % x, y, z;

...

Continues on next page
70 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.6 Procedure call

The string expression in the statement %<expression>% is in the normal case a
string with the name of a procedure found according to the scope rules, but the
string could also have an enclosing description prefix that specify the location of
the routine.
"name1:name2" specify the procedure "name2" inside the module "name1" (note
that the procedure "name2" could be declared local in that module). ":name2"
specify the global procedure "name2" in one of the task modules, this is very useful
when a downwards call must be done from the system level (installed built in
object).

Late binding
Note that late binding is available for procedure calls only, not for function calls.
The general rules concerning the argument list of the procedure call are exactly
the same as those of the function call. For more details, see Function calls on
page 61, and Routine declarations on page 85.

DescriptionExample

procedure callmove t1, pos2, mv;

with namesmove tool := t1, dest := pos2, movedata :=
mv;

with switch reltoolmove \reltool, t1, dest, mv;

with optional speedmove \reltool, t1, dest, mv \speed := 100;

with optional timemove \reltool, t1, dest, mv \time := 20;

Normally the procedure reference is solved (bind) according to the normal scope
rules, but late binding provide a way to do a deviation from that rule.

Technical reference manual - RAPID kernel 71
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.6 Procedure call

Continued

4.7 The Goto statement

Definition
The goto statement causes the execution to continue at the position of a label.

<goto statement> ::= GOTO <identifier> ';'

Note

A goto statement may not transfer control into a statement list.

For example:
next:

i := i + 1;

...

GOTO next;

72 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.7 The Goto statement

4.8 The Return statement

Definition
The return statement terminates the execution of a routine and, if applicable,
specifies a return value. A routine may contain an arbitrary number of return
statements. A return statement can occur anywhere in the statement list or the
error or backward handler of the routine and at any level of a compound statement.
The execution of a return statement in the entry (see Task modules on page121)
routine of a task terminates the evaluation of the task. The execution of a return
statement in a trap (see Trap routines on page 118) routine resumes execution at
the point of the interrupt.

<return statement> ::= RETURN [<expression>] ';'

Limitations
The expression type must be equal to the type of the function. Return statements
in procedures and traps must not include the return expression.
For example:

FUNC num abs_value (num value)

IF value < 0 THEN

RETURN -value;

ELSE

RETURN value;

ENDIF

ENDFUNC

PROC message (string mess)

write printer, mess;

RETURN; ! could have been left out

ENDPROC

Technical reference manual - RAPID kernel 73
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.8 The Return statement

4.9 The Raise statement

Definition
The raise statement is used to explicitly raise or propagate an error.

<raise statement> ::= RAISE [<error number>] ';'

<error number> ::= <expression>

Error numbers
A raise statement that includes an explicit error number raises an error with that
number. The error number (see Error recovery on page 97) expression must
represent an integer value (see The type num on page 31) in the range from 1 to
90. A raise statement including an error number must not appear in the error
handler of a routine.
A raise statement with no error number may only occur in the error handler of a
routine and raises again (re-raises) the same (current) error at the point of the call
of the routine, that is propagates the error. Since a trap routine can only be called
by the system (as a response to an interrupt), any propagation of an error from a
trap routine is made to the system error handler (see Error recovery on page 97).
For example:

CONST errnum escape := 10;

...

RAISE escape; ! recover from this position

...

ERROR

IF ERRNO = escape THEN

RETURN val2;

ENDIF

ENDFUNC

74 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.9 The Raise statement

4.10 The Exit statement

Definition
The exit statement is used to immediately terminate the execution of a task.

<exit statement> ::= EXIT ';'

Task termination using the exit statement, unlike returning from the entry routine
of the task, in addition prohibits any attempt from the system to automatically
restart the task.
For example:

TEST state

CASE ready:

...

DEFAULT :

! illegal/unknown state - abort

write console, "Fatal error: illegal state";

EXIT;

ENDTEST

Technical reference manual - RAPID kernel 75
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.10 The Exit statement

4.11 The Retry statement

Definition
The retry statement is used to resume execution after an error, starting with
(reexecuting) the statement that caused the error.

<retry statement> ::= RETRY ';'

The retry statement can only appear in the error handler of a routine.
For example:

...

! open logfile

open \append, logfile, "temp.log";

...

ERROR

IF ERRNO = ERR_FILEACC THEN

! create missing file

create "temp.log";

! resume execution

RETRY;

ENDIF

! propagate "unexpected" error RAISE; ENDFUNC

RAISE;

ENDFUNC

76 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.11 The Retry statement

4.12 The Trynext statement

Definition
The trynext statement is used to resume execution after an error, starting with
the statement following the statement that caused the error.

<trynext statement> ::= TRYNEXT ';'

The trynext statement can only appear in the error handler of a routine.
For example:

...

! Remove the logfile

delete logfile;

...

ERROR

IF ERRNO = ERR_FILEACC THEN

! Logfile already removed - Ignore

TRYNEXT;

ENDIF

! propagate "unexpected" error

RAISE;

ENDFUNC

Technical reference manual - RAPID kernel 77
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.12 The Trynext statement

4.13 The Connect statement

Definition
The connect statement allocates an interrupt number, assigns it to a variable or
parameter (connect target) and connects it to a trap routine. When (if) an interrupt
with that particular interrupt number later occurs the system responds to it by
calling the connected trap routine. The connect target can be represented by the
placeholder <VAR>.

<connect statement> ::= CONNECT <connect target> WITH <trap> ';'

<connect target> ::=

<variable>

| <parameter>

| <VAR>

<trap> ::= <identifier>

Prerequisites
The connect target must have num (or alias for num) type and must be (or
represent) a module variable (not a routine variable). If a parameter is used as
connect target it must be a VAR or INOUT/VAR parameter, see Parameter
declarations on page 86. An allocated interrupt number cannot be "disconnected"
or connected with another trap routine. The same connect target may not be
associated with the same trap routine more than once. This means that the same
connect statement may not be executed more than once and that only one of two
identical connect statements (same connect target and same trap routine) may be
executed during a session. Note though, that more than one interrupt number may
be connected with the same trap routine.
For example:

VAR intnum hp;

PROC main()

...

CONNECT hp WITH high_pressure;

...

ENDPROC

TRAP high_pressure

close_valve\fast;

RETURN;

ENDTRAP

78 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.13 The Connect statement

4.14 The IF statement

Definition
The IF statement evaluates one or none of a number of statement lists, depending
on the value of one or more conditional expressions.

<if statement> ::=

IF <conditional expression> THEN <statement list>

{ELSEIF <conditional expression> THEN <statement list> | <EIT>
}

[ELSE <statement list>]

ENDIF

The conditional expressions are evaluated in succession until one of them evaluates
to true. The corresponding statement list is then executed. If none of them evaluates
to true the (optional) else clause is executed. The placeholder <EIT> can be used
to represent an undefined elseif clause.
For example:

IF counter > 100 THEN

counter := 100;

ELSEIF counter < 0 THEN

counter := 0;

ELSE

counter := counter + 1;

ENDIF

Technical reference manual - RAPID kernel 79
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.14 The IF statement

4.15 The compact IF statement

Definition
In addition to the general, structured if-statement, see The IF statement on page79,
RAPID provides an alternative, compact if statement. The compact if statement
evaluates a single, simple statement if a conditional expression evaluates to true.

<compact if statement> ::=

IF <conditional expression> (<simple statement> | <SMT>)

The placeholder <SMT> can be used to represent an undefined simple statement.
For example:

IF ERRNO = escape1 GOTO next;

80 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.15 The compact IF statement

4.16 The For statement

Definition
The for statement repeats the evaluation of a statement list while a loop variable
is incremented (or decremented) within a specified range. An optional step clause
makes it possible to select the increment (or decrement) value.
The loop variable:

• is declared (with type num) by its appearance.
• has the scope of the statement list (do .. endfor).
• hides any other object with the same name.
• is readonly, that is cannot be updated by the statements of the for loop.
<for statement> ::=

FOR <loop variable> FROM <expression>

TO <expression> [STEP <expression>]

DO <statement list> ENDFOR

<loop variable> ::= <identifier>

Initially the from, to and step expressions are evaluated and their values are kept.
They are evaluated only once. The loop variable is initiated with the from value. If
no step value is specified it defaults to 1 (or -1 if the range is descending).
Before each new (not the first) loop, the loop variable is updated and the new value
is checked against the range. As soon as the value of the loop variable violates (is
outside) the range the execution continues with the subsequent statement.
The from, to and step expressions must all have num (numeric) type.
For example:

FOR i FROM 10 TO 1 STEP -1 DO

a{i} := b{i};

ENDFOR

Technical reference manual - RAPID kernel 81
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.16 The For statement

4.17 The While statement

Definition
The while statement repeats the evaluation of a statement list as long as the
specified conditional expression evaluates to true.

<while statement> ::=

WHILE <conditional expression> DO

<statement list> ENDWHILE

The conditional expression is evaluated and checked before each new loop. As
soon as it evaluates to false the execution continues with the subsequent statement.
For example:

WHILE a < b DO

...

a := a + 1;

ENDWHILE

82 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.17 The While statement

4.18 The Test statement

Definition
The test statement evaluates one or none of a number of statement lists,
depending on the value of an expression.

<test statement> ::=

TEST <expression>

{ CASE <test value> { ',' <test value> } ':' <statement list>)
| <CSE> }

[DEFAULT ':'<statement list>]

ENDTEST

<test value> ::= <expression>

Each statement list is preceded by a list of test values, specifying the values for
which that particular alternative is to be selected. The test expression can have
any value or semi-value data type (see Data type value classes on page 37). The
type of a test value must be equal to the type of the test expression. The execution
of a test statement will choose one or no alternative. In case more than one test
value fits the test expression only the first is recognized. The placeholder <CSE>
can be used to represent an undefined case clause.
The optional default clause is evaluated if no case clause fits the expression.
For example:

TEST choice

CASE 1, 2, 3 :

pick number := choice;

CASE 4 :

stand_by;

DEFAULT:

write console, "Illegal choice";

ENDTEST

Technical reference manual - RAPID kernel 83
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

4 Statements
4.18 The Test statement

This page is intentionally left blank

5 Routine declarations
5.1 Introduction to routine declarations

Definition
A routine is a named carrier of executable code. A user routine is defined by a
RAPID routine declaration. A predefined routine is supplied by the system and is
always available.
There are three types of routines: procedures, functions, and traps.
A function returns a value of a specific type and is used in expression context (see
Function calls on page 61).
A procedure does not return any value and is used in statement context (see
Procedure call on page 70).
Trap routines provide a means to respond to interrupts (see Interrupts on page117).
A trap routine can be associated with a specific interrupt (using the connect
statement, see The Connect statement on page 78) and is then later automatically
executed if that particular interrupt occurs. A trap routine can never be explicitly
called from RAPID code.
A routine declaration can be represented by the placeholder <RDN>.

<routine declaration> ::=

[LOCAL] (<procedure declaration>

| <function declaration>

| <trap declaration>)

| <comment>

| <RDN>

The declaration of a routine specifies its:
• Name
• Data type (only valid for functions)
• Parameters (not for traps)
• Data declarations and statements (body)
• Backward handler (only valid for procedures)
• Error handler
• Undo handler

Limitations
Routine declarations may only occur in the last section of a module (see Task
modules on page 121). Routine declarations cannot be nested, that is it is not
possible to declare a routine inside a routine declaration.
The optional local directive of a routine declaration classifies a routine to be local,
otherwise it is global (see Scope rules for routines on page 89).

Technical reference manual - RAPID kernel 85
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.1 Introduction to routine declarations

5.2 Parameter declarations

Definition
The parameter list of a routine declaration specifies the arguments (actual
parameters) that must/can be supplied when the routine is called. Parameters are
either required or optional. An optional parameter may be omitted from the argument
list of a routine call (see Scope rules for data objects on page 43). Two or more
optional parameters may be declared to mutually exclude each other, in which
case at most one of them may be present in a routine call. An optional parameter
is said to be present if the routine call supplies a corresponding argument, not
present otherwise. The value of a not present, optional parameter may not be set
or used. The predefined function Present can be used to test the presence of an
optional parameter. The placeholders <PAR>, <ALT>, <DIM> can be used to
represent undefined parts of a parameter list.

<parameter list> ::=

<first parameter declaration> { <next parameter declaration> }

<first parameter declaration> ::=

<parameter declaration>

| <optional parameter declaration>

| <PAR>

<next parameter declaration> ::=

',' <parameter declaration>

| <optional parameter declaration>

| ',' <optional parameter declaration>

| ',' <PAR>

<optional parameter declaration> ::=

'\' (<parameter declaration> | <ALT>) { '|' (<parameter
declaration> | <ALT>) }

<parameter declaration> ::=

[VAR | PERS | INOUT] <data type> <identifier> ['{' ('*' {
',' '*' }) | <DIM> '}']

| 'switch' <identifier>

Prerequisites
The data type of an argument must be equal to the data type of the corresponding
parameter.

Access modes
Each parameter has an access mode. Available access modes are in (default),
var, pers, inout, and ref. The access mode specifies how RAPID transfers a
corresponding argument to a parameter.

• An in parameter is initialized with the value of the argument (expression).
The parameter may be used (for example assigned a new value) as an
ordinary routine variable.

• A var, pers, inout, or ref parameter is used as an alias for the argument
(data object). This means that any update of the parameter is also an update
of the argument.

Continues on next page
86 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.2 Parameter declarations

Note

RAPID routines cannot have ref parameters, only predefined routines can.

The specified access mode of a parameter restricts a corresponding argument as
legal ("X" in the following table) or illegal ("-" in the following table).

refinoutpersvarinArgument

XXconstant

XXreadonly variable i

XXXXvariable

XX-XXparameter in

XX-XXparameter var

XXX-Xparameter pers

XX- iiXXparameter inout var

XXX- iiXparameter inout pers

----Xany other expression
i For example FOR loop variables (see The For statement on page 81), errno, intno.
ii Execution error (see Error classification on page 18).

Built-in routines
The built-in routines IsPers and IsVar can be used to test if an inout parameter
is an alias for a variable or persistent argument.

Switch
The special type switch may (only) be assigned to optional parameters and
provides a means to use "switch arguments", that is arguments given only by their
names (no values). The domain of the switch type is empty and no value can be
transferred to a switch parameter. The only way to use a switch parameter is to
check its presence using the predefined function Present, or to pass it as an
argument in a routine call.
For example:

PROC glue (\switch on | switch off, ... ! switch parameters

...

IF Present(off) THEN

! check presence of optional parameter 'off'

...

ENDPROC

glue\off, pos2; ! argument use

Arrays
Arrays may be passed as arguments. The degree of an array argument must comply
with the degree of the corresponding parameter. The dimension of an array
parameter is "conformant" (marked by '*'). The actual dimension is later bound by
the dimension of the corresponding argument of a routine call. A routine can
determine the actual dimension of a parameter using the predefined function Dim.

Continues on next page
Technical reference manual - RAPID kernel 87
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.2 Parameter declarations

Continued

For example:
... , VAR num pallet{*,*}, ...

! num-matrix parameter

88 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.2 Parameter declarations
Continued

5.3 Scope rules for routines

Definition
The scope of an object denotes the area in which the name is visible. The scope
of a predefined routine comprises any RAPID module. The following scope rules
are valid for user routines:

• The scope of a local user routine comprises the module in which it is
contained.

• The scope of a global user routine in addition comprises any other module
in the task buffer.

• Within its scope a user routine hides any predefined object with the same
name.

• Within its scope a local user routine hides any global module object with the
same name.

• Two module objects declared in the same module may not have the same
name.

• Two global objects declared in two different modules in the task buffer may
not have the same name.

• A global user routine and a module may not share the same name.

Other scope rules
The scope rules concerning parameters comply with the scope rules concerning
routine variables. For information on routine variable scope, see Scope rules for
data objects on page 43.
For information on task modules, see Task modules on page 121.

Technical reference manual - RAPID kernel 89
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.3 Scope rules for routines

5.4 Procedure declarations

Definition
A procedure declaration binds an identifier to a procedure definition.

<procedure declaration> ::=

PROC <procedure name>

'(' [<parameter list>] ')'

<data declaration list>

<statement list>

[BACKWARD <statement list>]

[ERROR [<error number list>] <statement list>]

[UNDO <statement list>]

ENDPROC

<procedure name> ::= <identifier>

<data declaration list> ::= { <data declaration> }

A data declaration list can include comments, see Comments on page 28.

Evaluation and termination
The evaluation of a procedure is either explicitly terminated by a return statement
(see The Return statement on page 73) or implicitly terminated by reaching the
end (ENDPROC, BACKWARD, ERROR, or UNDO) of the procedure.
For example, multiply all elements of a num array by a factor:

PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO Dim(array, 1) DO

array{index} := array{index} * factor;

ENDFOR

ENDPROC ! implicit return

The predefined Dim function returns the dimension of an array.

Late binding
Procedures which are going to be used in late binding calls are treated as a special
case. That is the parameters for the procedures, which are called from the same
late binding statement, should be matching as regards optional/required parameters
and mode, and should also be of the same basic type. For example if the second
parameter of one procedure is required and declared as VAR num then the second
parameter of other procedures, which are called by the same late binding statement,
should have a second parameter which is a required VAR with basic type num. The
procedures should also have the same number of parameters. If there are mutually
exclusive optional parameters, they also have to be matching in the same sense.

90 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.4 Procedure declarations

5.5 Function declarations

Definition
A function declaration binds an identifier to a function definition.

<function declaration> ::=

FUNC <data type>

<function name>

'(' [<parameter list>] ')'

<data declaration list>

<statement list>

[ERROR [<error number list>] <statement list>]

[UNDO <statement list>]

ENDFUNC

<function name> ::= <identifier>

Functions can have (return) any value data type (including any available installed
type). A function cannot be dimensioned, that is a function cannot return an array
value.

Evaluation and termination
The evaluation of a function must be terminated by a return statement, see The
Return statement on page 73.
For example, return the length of a vector.

FUNC num veclen(pos vector)

RETURN sqrt(quad(vector.x) + quad(vector.y) + quad(vector.z));

ERROR

IF ERRNO = ERR_OVERFLOW THEN

RETURN maxnum;

ENDIF

! propagate "unexpected" error

RAISE;

ENDFUNC

Technical reference manual - RAPID kernel 91
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.5 Function declarations

5.6 Trap declarations

Definition
A trap declaration binds an identifier to a trap definition. A trap routine can be
associated with an interrupt (number) by using the connect statement, see The
Connect statement on page 78. Note that one trap routine may be associated with
many (or no) interrupts.

<trap declaration> ::=

TRAP <trap name>

<data declaration list>

<statement list>

[ERROR [<error number list>] <statement list>]

[UNDO <statement list>]

ENDTRAP

<trap name> ::= <identifier>

Evaluation and termination
The evaluation of the trap routine is explicitly terminated using the return statement
(see The Return statement on page 73) or implicitly terminated by reaching the
end (endtrap, error, or undo) of the trap routine. The execution continues at the
point of the interrupt.
For example, respond to low pressure interrupt.

TRAP low_pressure

open_valve\slow;

! return to point of interrupt

RETURN;

ENDTRAP

For example, respond to high pressure interrupt.
TRAP high_pressure

close_valve\fast;

! return to point of interrupt

RETURN;

ENDTRAP

92 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

5 Routine declarations
5.6 Trap declarations

6 Backward execution
6.1 Introduction to backward execution

Definition
RAPID supports stepwise, backward execution of statements. Backward execution
is very useful for debugging, test, and adjustment purposes during RAPID program
development. RAPID procedures may contain a backward handler (statement list)
that defines the backward execution "behavior" of the procedure (call).

Limitations
The following general restrictions are valid for backward execution:

• Only simple (not compound) statements can be executed backwards.
• It is not possible to step backwards out of a routine at the top of its statement

list (and reach the routine call).
• Simple statements have the following backward behavior:
• Procedure calls (predefined or user defined) can have any backward behavior

- take some action, do nothing or reject I the backward call. The behavior is
defined by the procedure definition.

• The arguments of a procedure call being executed backwards are always
(even in case of reject) executed and transferred to the parameters of the
procedure exactly in the same way as is the case with forward execution.
Argument expressions (possibly including function calls) are always executed
"forwards".

• Comments, labels, assignment statements and connect statements are
executed as "no operation" while all other simple statements rejectsI
backward execution.

• When executing backward handlers and there is an execution error, it will
not be possible to handle the error in an error handler.

I No support for backward step execution, no step is taken.

Technical reference manual - RAPID kernel 93
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

6 Backward execution
6.1 Introduction to backward execution

6.2 Backward handlers

Definition
Procedures may contain a backward handler that defines the backward execution
of a procedure call.
The backward handler is really a part of the procedure and the scope of any routine
data also comprises the backward handler of the procedure.
For example:

PROC MoveTo ()

MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

BACKWARD

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

ENDPROC

When the procedure MoveTo is called during forward execution, the first 3
instructions are executed, as numbered in the following code. The backward
instructions (last 3) are not executed.

PROC MoveTo ()

1. MoveL p1,v500,z10,tool1;

2. MoveC p2,p3,v500,z10,tool1;

3. MoveL p4,v500,z10,tool1;

BACKWARD

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

ENDPROC

When the procedure MoveTo is called during backwards execution, the last 3
instructions are executed, as numbered in the following code. The forward
instructions (first 3) are not executed.

PROC MoveTo ()

MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

BACKWARD

1. MoveL p4,v500,z10,tool1;

2. MoveC p2,p3,v500,z10,tool1;

3. MoveL p1,v500,z10,tool1;

ENDPROC

Limitations
Instructions in the backward or error handler of a routine may not be executed
backwards. Backward execution cannot be nested, that is two instructions in a call
chain may not simultaneously be executed backwards.
See also Limitations for Move instructions in a backward handler on page 96.

Continues on next page
94 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

6 Backward execution
6.2 Backward handlers

Procedures with no backward handler
A procedure with no backward handler cannot be executed backwards. A procedure
with an empty backward handler is executed as no operation.

Technical reference manual - RAPID kernel 95
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

6 Backward execution
6.2 Backward handlers

Continued

6.3 Limitations for Move instructions in a backward handler

Limitations
The Move instruction type and sequence in the backward handler must be a mirror
of the movement instruction type and sequence for forward execution in the same
routine. In the following example, the instructions are numbered to show in which
order they are executed.

PROC MoveTo ()

1. MoveL p1,v500,z10,tool1;

2. MoveC p2,p3,v500,z10,tool1;

3. MoveL p4,v500,z10,tool1;

BACKWARD

3. MoveL p4,v500,z10,tool1;

2. MoveC p2,p3,v500,z10,tool1;

1. MoveL p1,v500,z10,tool1;

ENDPROC

Note that the order of CirPoint p2 and ToPoint p3 in the MoveC should be the
same.
By Move instructions is meant all instructions that result in some movement of the
robot or additional axes such as MoveL, SearchC, TriggJ, ArcC, PaintL ...

CAUTION

Any departures from this programming limitation in the backward handler can
result in faulty backward movement. Linear movement can result in circular
movement and vice versa, for some part of the backward path.

96 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

6 Backward execution
6.3 Limitations for Move instructions in a backward handler

7 Error recovery
7.1 Error handlers

Definition
An execution error (see Error classification on page 18) is an abnormal situation,
related to the execution of a specific piece of RAPID program code. An error makes
further execution impossible (or at least hazardous). "Overflow" and "division by
zero" are examples of errors. Errors are identified by their unique error number
and are always recognized by the system. The occurrence of an error causes
suspension of the normal program execution and the control is passed to an error
handler. The concept of error handlers makes it possible to respond to, and possibly
recover from errors that arise during program execution. If further execution is not
possible, at least the error handler can assure that the task is given a graceful
abortion.
Any routine may include an error handler. The error handler is really a part of the
routine and the scope of any routine data object (variable, constant, or parameter)
also comprises the error handler of the routine. If an error occurs during the
evaluation of the routine the control is transferred to the error handler.
For example:

FUNC num safediv(num x, num y)

RETURN x / y;

ERROR

IF ERRNO = ERR_DIVZERO THEN

! return max numeric value

RETURN max_num;

ENDIF

ENDFUNC

ERRNO

The predefined (readonly) variable ERRNO contains the error number of the (most
recent) error and can be used by the error handler to identify the error. After
necessary actions have been taken the error handler can:

• Resume execution starting with the statement in which the error occurred.
This is made using the RETRY statement, see The Retry statement on page76.

• Resume execution starting with the statement after the statement in which
the error occurred. This is made using the TRYNEXT statement, see The
Trynext statement on page 77.

• Return control to the caller of the routine by using the RETURN statement,
see The Return statement on page73. If the routine is a function the RETURN
statement must specify an appropriate return value.

• Propagate the error to the caller of the routine by using the RAISE statement,
see The Raise statement on page 74. "Since I‘m not familiar with this error
it's up to my caller to deal with it".

Continues on next page
Technical reference manual - RAPID kernel 97
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.1 Error handlers

System error handler
If an error occurs in a routine that does not contain an error handler or reaching
the end of the error handler (ENDFUNC, ENDPROC, or ENDTRAP), the system error
handler is called. The system error handler just reports the error and stops the
execution.

Note

It is not possible to recover from or respond to errors that occur within an error
handler or backward handler. Such errors are always propagated to the system
error handler.

In a chain of routine calls, each routine may have its own error handler. If an error
occurs in a routine with an error handler, and the error is explicitly propagated
using the RAISE statement, the same error is raised again at the point of the call
of the routine the error is propagated. If the top of the call chain (the entry routine
of the task) is reached without any error handler found or if reaching the end of
any error handler within the call chain, the system error handler is called. The
system error handler just reports the error and stops the execution. Since a trap
routine can only be called by the system (as a response to an interrupt), any
propagation of an error from a trap routine is made to the system error handler.

Errors raised by the program
In addition to errors detected and raised by the system, a program can explicitly
raise errors using the RAISE statement, see The Raise statement on page74. This
can be used to recover from complex situations. For example it can be used to
escape from deeply nested code positions. Error numbers in the range from 1 to
90 may be used.
For example:

CONST errnum escape1 := 10;

...

RAISE escape1;

...

ERROR

IF ERRNO = escape1 THEN

RETURN val2;

ENDIF

ENDFUNC

98 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.1 Error handlers
Continued

7.2 Error recovery with long jump

Definition
Error recovery with long jump may be used to bypass the normal routine call and
return mechanism to handle abnormal or exceptional conditions. To accomplish
this, a specific error recovery point must be specified. By using the RAISE

instruction the long jump will be performed and the execution control is passed to
that error recovery point.
Error recovery with long jump is typically used to pass execution control from a
deeply nested code position, regardless of execution level, as quickly and simple
as possible to a higher level.

Execution levels
An execution level is a specific context that the RAPID program is running in. There
are three execution levels in the system, Normal, Trap, and User:

• Normal level: All program are started at this level. This is the lowest level.
• Trap level: Trap routines are executed at this level. This level overrides the

normal level but can be overridden by the user level.
• User level: Event routines and service routines are executed at this level.

This level overrides normal and trap level. This level is the highest one and
cannot be overridden by any other level.

Error recovery point
The essential thing for error recovery with long jump is the characteristic error
recovery point.
The error recovery point is a normal ERROR clause but with an extended syntax, a
list of error numbers enclosed by a pair of parentheses, see example below.

MODULE example

PROC main()

! Do something important

myRoutine;

ERROR (56, ERR_DIVZERO)

RETRY;

ENDPROC

ENDMODULE

Syntax
An error recovery point has the following syntax: (EBNF)

[ERROR [<error number list>] <statement list>]

<error number list> ::= '(' <error number> { ',' <error number>}
')'

<error number> ::=

<num literal>

| <entire constant>

| <entire variable>

| <entire persistent>

Continues on next page
Technical reference manual - RAPID kernel 99
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.2 Error recovery with long jump

Using error recovery with long jump
MODULE example2

PROC main()

routine1;

! Error recovery point

ERROR (56)

RETRY;

ENDPROC

PROC routine1()

routine2;

ENDPROC

PROC routine2()

RAISE 56;

ERROR

! This will propagate the error 56 to main

RAISE;

ENDPROC

ENDMODULE

The system handles a long jump in following order:
• The raised error number is search, starting at calling routine's error handler

and to the top of the current call chain. If there is an error recovery point with
the raise error number, at any routine in the chain, the program execution
continues in that routine's error handler.

• If no error recovery point is found in the current execution level the searching
is continued in the previous execution level until the NORMAL level is
reached.

• If no error recovery point is found in any execution level the error will be
raised and handled in the calling routine's error handler, if any.

Error recovery through execution level boundaries
It is possible to pass the execution control through the execution level boundaries
by using long jump, that is the program execution can jump from a TRAP, USER
routine to the Main routine regardless how deep the call chains are in the TRAP,
USER, and NORMAL level. This is useful way to handle abnormal situation that
requires the program to continue or start over from good and safely defined position
in the program.
When a long jump is done from one execution level to another level there can be
an active instructions at that level. Since the long jump is done from one error
handler to another, the active instruction will be undone by the system (for example
an active MoveX instruction will clear its part of the path).

Continues on next page
100 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.2 Error recovery with long jump
Continued

Additional information
By using the predefined constant LONG_JMP_ALL_ERR it is possible to catch all
kinds of errors at the error recovery point. Observe the following restrictions when
using error recovery with long jump:

• Do not assume that the execution mode (cont, cycle, or forward step) is the
same at the error recovery point as it was where the error occurred. The
execution mode is not inherited at long jump.

• Be careful when using StorePath. Always call RestoPath before doing a
long jump, otherwise the results are unpredictable.

• The numbers of retries are not set to zero at the error recovery point after a
long jump.

• Be careful when using TRYNEXT at the error recovery point, the result can
be unpredictable if the error occurs in a function call as in the following
example.

For example:
MODULE Example3

PROC main

WHILE myFunction() = TRUE DO

myRoutine;

ENDWHILE

EXIT;

ERROR (LONG_JMP_ALL_ERR)

TRYNEXT;

ENDPROC

ENDMODULE

If the error occurs in the function myFunction and the error is caught in the main
routine, the instruction TRYNEXT will pass the execution control to the next
instruction, in this case EXIT. This is because the WHILE instruction considers to
be the one that fails.

UNDO handler
When using long jump, one or several procedures may be dropped without
executing the end of the routine or the error handler. If no undo handler is used
these routine may leave loose ends. In the following example, routine1 would
leave the file log open if the long jump was used and there was no undo handler
in routine1.
To make sure that each routine cleans up after itself, use an undo handler in any
routine that may not finish the execution due to a long jump.
For example:

MODULE example4

PROC main()

routine1;

! Error recovery point

ERROR (56)

RETRY;

ENDPROC

Continues on next page
Technical reference manual - RAPID kernel 101
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.2 Error recovery with long jump

Continued

PROC routine1()

VAR iodev log;

Open "HOME:" \File:= "FILE1.DOC", log;

routine2;

Write log, "routine1 ends with normal execution";

Close log;

ERROR

! Another error handler

UNDO

Close log;

ENDPROC

PROC routine2()

RAISE 56;

ERROR

! This will propagate the error 56 to main

RAISE;

ENDPROC

ENDMODULE

102 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.2 Error recovery with long jump
Continued

7.3 Nostepin routines

Definition
The nostepin routines in a nostepin module can call each other in call chains. Using
the RAISE instruction in the error handler of one of the routines in the call chain
will propagate the error one step up in the call chain. In order to raise the error to
the user level (outside the nostepin module) with the RAISE instruction, every
routine in the call chain must have an error handler that raise the error.
By using the RaiseToUser instruction, the error can be propagated several steps
up in the call chain. The error will then be handled by the error handler in the last
routine in the call chain that is not a nostepin routine.
If RaiseToUser is called with the argument \Continue, the instruction (in the
nostepin routine) that caused the error will be remembered. If the error handler
that handles the error ends with RETRY or TRYNEXT, the execution will continue
from where the error occurred.

xx1300000275

routine2 is called1

routine3 is called2

The error is raised to user level3

The execution returns to the execution in routine3 that caused the error4

Note

One or several routines may be dropped without executing the end of the routine
or the error handler. In the example this would have been the case for routine2
if RaiseToUser had used the argument \BreakOff instead of \Continue. To
make sure such a routine does not leave any loose ends (such as open files)
make sure there is an undo handler that cleans up (for example close files).

Note

If the routine that calls the nostepin routine (routine1 in the example) is made
to a nostepin routine, the error will no longer be handled by its error handler.
Changing a routine to a nostepin routine can require the error handler to be
moved to the user layer.

Technical reference manual - RAPID kernel 103
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.3 Nostepin routines

7.4 Asynchronously raised errors

About asynchronously raised errors
If a movement instruction ends in a corner zone, the next move instruction must
be executed before the first move instruction has finished its path. Otherwise the
robot would not know how to move in the corner zone. If each move instruction
only moves a short distance with large corner zones, several move instructions
may have to be executed ahead.
An error may occur if something goes wrong during the robot movement. However,
if the program execution has continued, it is not obvious which move instruction
the robot is carrying out when the error occur. The handling of asynchronously
raised errors solves this problem.
The basic idea is that an asynchronously raised error is connected to a move
instruction and is handled by the error handler in the routine that called that
instruction.

Two types of asynchronously raised errors
There are two ways of creating asynchronously raised errors, resulting in slightly
different behavior.

• ProcerrRecovery \SyncOrgMoveInst creates an asynchronous error
that is connected to the move instruction which created the current robot
path.

• ProcerrRecovery \SyncLastMoveInst creates an asynchronous error
that is connected to the move instruction that is currently being executed. If
no move instruction is being executed this error is connected to the next
move instruction that will be executed.

If an error occurs during the first path but when the program is calculating the
second path (see illustration below), the behavior depends on the argument of
ProcerrRecovery. If the error is created with \SyncOrgMoveInst, it is connected
to the first move instruction (the instruction that created the first path). If the error

Continues on next page
104 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors

is created with \SyncLastMoveInst, it is connected to the second move instruction
(the instruction that created the second path).

p0 p1

p2

First path

Second path

Corner zone

Part of first path when the
program is executing the
second move instruction

xx1300000276

Attempt to handle errors in the routine that called the move instruction
If you create a routine with error handling to take care of process errors that may
occur during robot movement, you want these errors to be handled in this routine.
If the error is raised when the program pointer is in a subroutine, you do not want
the error handler of that subroutine to handle the error.
Asynchronously raised errors are connected to the path that the robot is currently
performing. An asynchronously raised error can be handled by the error handler
in the routine whose move instruction created the path the robot is carrying out
when the error occurs.
In the example shown below, a process error occurs before the robot has reached
p1, but the program pointer has already continued to the subroutine write_log.

Program example
PROC main()

...

my_process;

...

ERROR

...

ENDPROC

PROC my_process()

...

MoveL p1, v300, z10, tool1;

write_log;

MoveL p2, v300, z10, tool1;

...

ERROR

...

ENDPROC

Continues on next page
Technical reference manual - RAPID kernel 105
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors

Continued

PROC write_log()

...

ERROR

...

ENDPROC

Description of the example
If there was no handling of asynchronously raised errors, an error that was raised
when the program pointer was in write_logwould be handled by the error handler
in write_log. The handling of asynchronously raised errors will make sure that
the error is handled by the error handler in my_process.
An asynchronous error created with ProcerrRecovery \SyncOrgMoveInst

would instantly be handled by the error handler in my_process. An asynchronous
error created with ProcerrRecovery \SyncLastMoveInst would wait for the
program pointer to reach the second move instruction in my_process before being
handled by the error handler in my_process.

Note

If a subroutine (write_log in the example) was to have move instructions and
\SyncLastMoveInst is used, the error might be handled by the error handler
in the subroutine.

If the error handler in my_process ends with EXIT, all program execution is
stopped.
If the error handler in my_process ends with RAISE, the error is handled by the
error handler in main. The routine calls to my_process and write_log are
dropped. If the error handler in main ends with RETRY, the execution of my_process
starts over.
If the error handler in my_process ends with RETRY or TRYNEXT, the program
execution continues from where the program pointer is (in write_log). The error
handler should have solved the error situation and called StartMove to resume
the movement for the instruction that caused the error. Even if the error handler
ends with RETRY, the first MoveL instruction is not executed again.

Note

In this case TRYNEXT works the same way as RETRY because the system can
be restarted from where the error occurred.

Continues on next page
106 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors
Continued

What happens when a routine call is dropped?
When the execution reach the end of a routine, that routine call is dropped. The
error handler of that routine call cannot be called if the routine call has been
dropped. In the example below, the robot movement will continue after the first
my_process routine call has been dropped (since the last move instruction has a
corner zone).

Program example
PROC main()

...

my_process;

my_process;

...

ERROR

...

ENDPROC

PROC my_process()

...

MoveL p1, v300, z10, tool1;

MoveL p2, v300, z10, tool1;

...

ERROR

...

ENDPROC

Description of the example
If the program pointer is in main when an error originating from the first my_process
occurs, it cannot be handled by the error handler in the my_process routine call.
Where this error is handled will then depend on how the asynchronous error is
created.

• If the error is raised with ProcerrRecovery \SyncOrgMoveInst, the error
will be handled one step up in the call chain. The error is handled by the error
handler in the routine that called the dropped routine call. In the example
above, the error handler in main would handle the error if the my_process

routine call has been dropped.
• If the error is raised with ProcerrRecovery \SyncLastMoveInst, the

error will be handled by the error handler where the next move instruction
is, that is the second routine call to my_process. The raising of the error
may be delayed until the program pointer reach the next move instruction.

Tip

To make sure asynchronously raised errors are handled in a routine, make sure
the last move instruction ends with a stop point (not corner zone) and does not
use \Conc.

Continues on next page
Technical reference manual - RAPID kernel 107
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors

Continued

Example
In this example, asynchronously raised errors can be created in the routine
my_process. The error handler in my_process is made to handle these errors.
A process flow is started by setting the signal do_myproc to 1. The signal
di_proc_sup supervise the process, and an asynchronous error is raised if
di_proc_sup becomes 1. In this simple example, the error is resolved by setting
do_myproc to 1 again before resuming the movement.

MODULE user_module

VAR intnum proc_sup_int;

VAR iodev logfile;

PROC main()

...

my_process;

my_process;

...

ERROR

...

ENDPROC

PROC my_process()

my_proc_on;

MoveL p1, v300, z10, tool1;

write_log;

MoveL p2, v300, z10, tool1;

my_proc_off;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

my_proc_on;

StartMove;

RETRY;

ENDIF

ENDPROC

PROC write_log()

Open "HOME:" \File:= "log.txt", logfile \Append;

Write logfile "my_process executing";

Close logfile;

ERROR

IF ERRNO = ERR_FILEOPEN THEN

TRYNEXT;

ENDIF

UNDO

Close logfile;

ENDPROC

TRAP iprocfail

my_proc_off;

ProcerrRecovery \SyncLastMoveInst;

RETURN;

Continues on next page
108 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors
Continued

ENDTRAP

PROC my_proc_on()

SetDO do_myproc, 1;

CONNECT proc_sup_int WITH iprocfail;

ISignalDI di_proc_sup, 1, proc_sup_int;

ENDPROC

PROC my_proc_off()

SetDO do_myproc, 0;

IDelete proc_sup_int;

ENDPROC

ENDMODULE

Error when PP is in write_log

What will happen if a process error occurs when the robot is on its way to p1, but
the program pointer is already in the subroutine write_log?
The error is raised in the routine that called the move instruction, which is
my_process, and is handled by its error handler.
Since the ProcerrRecovery instruction, in the example, use the switch
\SyncLastMoveInst, the error will not be raised until the next move instruction
is active. Once the second MoveL instruction in my_process is active, the error
is raised and handled in the error handler in my_process.
If ProcerrRecovery had used the switch \SyncOrgMoveInst, the error would
have been raised directly in my_process.

Error when execution of my_process has finished
What will happen if a process error occurs when the robot is on its way to p2, but
the program pointer has already left the routine my_process?
The routine call that caused the error (the first my_process) has been dropped
and its error handler cannot handle the error. Where this error is raised depends
on which switch is used when calling ProcerrRecovery.
Since the ProcerrRecovery instruction, in the example, use the switch
\SyncLastMoveInst, the error will not be raised until the next move instruction
is active. Once a move instruction is active in the second my_process routine call,
the error is raised and handled in the error handler in my_process.
If ProcerrRecovery had used the switch \SyncOrgMoveInst, the error would
have been raised in main. The way \SyncOrgMoveInstworks is that if the routine

Continues on next page
Technical reference manual - RAPID kernel 109
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors

Continued

call that caused the error (my_process) has been dropped, the routine that called
that routine (main) will raise the error.

Note

If there had been a move instruction between the my_process calls in main, and
\SyncLastMoveInstwas used, the error would be handled by the error handler
in main. If another routine with move instructions had been called between the
my_process calls, the error would have been handled in that routine. This shows
that when using \SyncLastMoveInst you must have some control over which
is the next move instruction.

Nostepin move instructions and asynchronously raised errors
When creating a customized nostepin move instruction with a process, it is
recommended to use ProcerrRecovery \SyncLastMoveInst. This way, all
asynchronously raised errors can be handled by the nostepin instruction.
This requires that the user only use this type of move instruction during the entire
movement sequence. The movement sequence must begin and end in stop points.
Only if two instructions have identical error handlers can they be used in the same
movement sequence. This means that one linear move instruction and one circular,
using the same process and the same error handler, can be used in the same
movement sequence.
If an error should be raised to the user, use RaiseToUser \Continue. After the
error has been resolved, the execution can then continue from where the error
occurred.

UNDO handler
The execution of a routine can be abruptly ended without running the error handler
in that routine. This means that the routine will not clean up after itself.
In the following example, we assume that an asynchronously raised error occurs
while the robot is on its way to p1 but the program pointer is at the Write instruction
in write_log. If there was no undo handler, the file logfile would not be closed.

PROC main()

...

my_process;

...

ERROR

...

ENDPROC

PROC my_process()

MoveL p1, v300, z10, tool1;

write_log;

MoveL p2, v300, z10, tool1;

ERROR

...

ENDPROC

PROC write_log()

Open .. logile ..;

Continues on next page
110 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors
Continued

Write logfile;

Close logfile;

ERROR

...

UNDO

Close logfile;

ENDPROC

This problem can be solved by using undo handlers in all routines that can be
interrupted by an asynchronously raised error. It is in the nature of asynchronously
raised errors that it is difficult to know where the program pointer will be when they
occur. Therefore, when using asynchronously raised errors, use undo handlers
whenever clean up may be necessary.

Technical reference manual - RAPID kernel 111
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.4 Asynchronously raised errors

Continued

7.5 The instruction SkipWarn

Definition
An error that is handled in an error handler still generates a warning in the event
log. If, for some reason, you do not want any warning to be written to the event
log, the instruction SkipWarn can be used.

Example
In the following example code, a routine tries to write to a file that other robot
systems also have access to. If the file is busy, the routine waits 0.1 seconds and
tries again. If SkipWarn was not used, the log file would write a warning for every
attempt, even though these warnings are totally unnecessary. By adding the
SkipWarn instruction, the operator may not notice that the file was busy at the
first attempt.
Note that the maximum number of retries is determined by the parameter No Of
Retry. To make more than 4 retries, you must configure this parameter.

PROC routine1()

VAR iodev report;

Open "HOME:" \File:= "FILE1.DOC", report;

Write report, "No parts from Rob1="\Num:=reg1;

Close report;

ERROR

IF ERRNO = ERR_FILEOPEN THEN

WaitTime 0.1;

SkipWarn;

RETRY;

ENDIF

ENDPROC

112 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.5 The instruction SkipWarn

7.6 Motion error handling

About motion error handling
The RAPID execution does not have to stop when a collision error occurs (event
number 50204 - Motion supervision). If the system parameterCollision Error Handler
is defined the execution will enter the RAPID error handler after the retraction and
the execution can continue if all conditions for further execution are fulfilled.
This is known as motion error handling.
To separate collision errors from other RAPID errors, the errno variable is set to
ERR_COLL_STOP.

Example
To be able to start the motion after leaving the error handler, a StartMove instruction
must be called from the error handler. For MultiMove, all tasks must have a
StartMove instruction in the error handler. Even the tasks that has not collided.

PROC main()

MoveJ p10, v200, fine, tool0;

MoveJ p20, v200, fine, tool0;

ERROR

TEST ERRNO

CASE ERR_COLL_STOP:

StorePath;

MoveJ p30, v200, fine, tool0;

RestoPath;

StartMove;

ENDTEST

RETRY;

ENDPROC

Functionality of motion error handling
Motion error handling is different compared to normal RAPID error handling since
the program pointer can be ahead of the motion pointer. Also, when using procedure
calls, the program pointer and the motion pointer are not always in the same
procedure when the error is raised.
The following behavior is used in the controller to evaluate where the motion error
should be handled:

1 Check if there is an error handler in the procedure where the motion pointer
currently is. If so, go to that error handler. If the motion pointer is not in the
call stack, then go to number 3.

2 If not 1, move upwards in the call stack from the procedure where the motion
pointer is, to see if any of those procedures has an error handler.

3 If not 2, check if there is an error handler in the procedure where the program
pointer currently is.

4 If not 3, move upwards in the call stack from the procedure where the program
pointer is, to see if any of those procedures has an error handler.

5 If no error handler is found at all, the RAPID execution stops with an error.

Continues on next page
Technical reference manual - RAPID kernel 113
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.6 Motion error handling

Example 1
In the below example the motion pointer is in a different procedure than the program
pointer. If a collision occurs while the program pointer is in proc3 and the motion
pointer is in proc1, the system will look for error handlers first in proc1, then
main, then proc3 and finally proc2.

MODULE example

PROC main()

proc1;

ERROR

!Error handling

ENDPROC

PROC proc1()

!Move instructions !Motion pointer

proc2;

ERROR

!Error handling

ENDPROC

PROC proc2()

proc3;

ERROR

!Error handling

ENDPROC

PROC proc3()

!Non-move instructions !Program pointer

ERROR

!Error handling

ENDPROC

ENDMODULE

Example 2
In the below example the motion pointer is not in the call stack. There is a \Conc

argument on the move instruction in Routine2. The motion pointer is in Routine2,
but the program pointer hangs on the WaitTime 10 instruction in Routine1.
If a collision occurs on the way to position p30 then the error handler in Routine1
will be run although the motion pointer is in Routine2.

MODULE MainModule

PROC main()

MoveJ p10, v1000, z50, tool0;

Routine1;

ENDPROC

PROC Routine1()

Routine2;

WaitTime 10; !Program pointer

ERROR

TPWrite "Routine1";

ENDPROC

PROC Routine2()

MoveJ\Conc, p20, v10, z50, tool0; !Motion pointer

MoveJ\Conc, p30, v10, z50, tool0;

Continues on next page
114 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.6 Motion error handling
Continued

ERROR

TPWrite "Routine2";

StorePath;

RestoPath;

StartMoveRetry;

ENDPROC

ENDMODULE

Example 3
In the below example the instruction RAISE is used in the error handler. RAISE is
used to propagate the current error to the error handler of the calling routine. RAISE
discards the last active motion instruction so the movement may not be as expected.

MODULE example

PROC main()

proc1;

ERROR

IF ERRNO=ERR_COLL_STOP THEN

StartMoveRetry;

ENDIF

ENDPROC

PROC proc1()

!Move instruction

!Move instruction

ERROR

IF ERRNO=ERR_COLL_STOP THEN

RAISE;

ENDIF

ENDPROC

ENDMODULE

Limitations
Motion error handling is not active when stepping the program. Any collision that
occurs while stepping will stop the program, although an motion error handler is
available.
If fine points are used, motion errors can be handled in a predictable way. But if
the execution leaves the routine where the motion instruction is that causes the
collision, it is no longer possible to run the error handler located in the routine
where the motion instruction is. It is therefor not predicable which error handler
that will be run, see Functionality of motion error handling on page 113.
This is the case when using for example zones, motion instructions with the \Conc
argument, or procedure calls. To have a predictable behavior, make sure to end
the motion sequence with a fine point.

CAUTION

To have a predictable behavior make sure to end the motion sequence with a
fine point when handling collisions using the motion error handler.

Technical reference manual - RAPID kernel 115
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

7 Error recovery
7.6 Motion error handling

Continued

This page is intentionally left blank

8 Interrupts
Definition

Interrupts are program defined events identified by interrupt numbers. An interrupt
occurs as a consequence of an interrupt condition turning true. Unlike errors, the
occurrence of an interrupt is not directly related to (synchronous with) a specific
code position. The occurrence of an interrupt causes suspension of the normal
program execution and the control is passed to a trap routine. Interrupt numbers
are allocated and connected (associated) with a trap routine using the connect
statement, see The Connect statement on page78. Interrupt conditions are defined
and manipulated using predefined routines. A task may define an arbitrary number
of interrupts.

Interrupt recognition and response
Even though the system recognizes the occurrence of an interrupt immediately,
the response in the form of calling the corresponding trap routine can only take
place at specific program positions, namely:

• at the entry of next (after interrupt recognition) statement (of any type).
• after the last statement of a statement list.
• any time during the execution of a waiting routine (for example WaitTime).

This means that, after the recognition of an interrupt, the normal program execution
always continue until one of these positions are reached. This normally results in
a delay of 2-30 ms between interrupt recognition and response, depending on what
type of movement is being performed at the time of the interrupt.

Editing interrupts
Interrupt numbers are used to identify interrupts/interrupt conditions. Interrupt
numbers are not just "any" numbers. They are "owned" by the system and must
be allocated and connected with a trap routine using the connect statement (see
The Connect statement on page78) before they may be used to identify interrupts.
For example:

VAR intnum full;

...

CONNECT full WITH ftrap;

Interrupts are defined and edited using predefined routines. The definition of an
interrupt specifies an interrupt condition and associates it with an interrupt number.
For example:

! define feeder interrupts

ISignalDI sig3, high, full;

An interrupt condition must be active to be watched by the system. Normally the
definition routine (for example ISignalDI) activates the interrupt but that is not
always the case. An active interrupt may in turn be deactivated again (and vice
versa).
For example:

! deactivate empty

Continues on next page
Technical reference manual - RAPID kernel 117
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

8 Interrupts

ISleep empty;

! activate empty again

IWatch empty;

The deletion of an interrupt de-allocates the interrupt number and removes the
interrupt condition. It is not necessary to explicitly delete interrupts. Interrupts are
automatically deleted when the evaluation of a task is terminated.
For example:

! delete empty

IDelete empty;

The raising of interrupts may be disabled and enabled. If interrupts are disabled
any interrupt that occurs is queued and raised first when interrupts are enabled
again. Note that the interrupt queue may contain more than one waiting interrupt.
Queued interrupts are raised in fifo order (first in, first out). Interrupts are always
disabled during the evaluation of a trap routine, see Trap routines on page118. For
example:

! enable interrupts

IEnable;

! disable interrupts

IDisable;

Trap routines
Trap routines provide a means to respond to interrupts. A trap routine is connected
with a particular interrupt number using the connect statement, see The Connect
statement on page78. If an interrupt occurs, the control is immediately (see Interrupt
recognition and response on page 117) transferred to its connected trap routine.
For example:

LOCAL VAR intnum empty;

LOCAL VAR intnum full;

PROC main()

...

! Connect feeder interrupts

CONNECT empty WITH ftrap;

CONNECT full WITH ftrap;

! define feeder interrupts

ISignalDI sig1, high, empty;

ISignalDI sig3, high, full;

...

ENDPROC

TRAP ftrap

TEST INTNO

CASE empty:

open_valve;

CASE full:

close_valve;

ENDTEST

RETURN;

ENDTRAP

Continues on next page
118 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

8 Interrupts
Continued

More than one interrupt may be connected with the same trap routine. The
predefined (readonly) variable INTNO contains the interrupt number and can be
used by a trap routine to identify the interrupt. After necessary actions have been
taken a trap routine can be terminated using the return statement (see The Return
statement on page73) or by reaching the end (endtrap or error) of the trap routine.
The execution continues at the point of the interrupt. Note that interrupts are always
disabled (see Editing interrupts on page117) during the evaluation of a trap routine.
Since a trap routine can only be called by the system (as a response to an interrupt),
any propagation of an error from a trap routine is made to the system error handler,
see Error recovery on page 97.

Technical reference manual - RAPID kernel 119
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

8 Interrupts
Continued

This page is intentionally left blank

9 Task modules
9.1 Introduction to task modules

Definition
A RAPID application is called a task. A task is composed of a set of modules. A
module contains a set of type definitions, data and routine declarations. The task
buffer is used to host modules currently in use (execution, development) on a
system. RAPID program code in the task buffer may be loaded/stored from/to file
oriented external devices (normally disk files) either as separate modules or as a
group of modules – a task.
RAPID distinguishes between task modules and system modules. A task module
is considered to be a part of the task/application while a system module is
considered to be a part of the system. System modules are automatically loaded
to the task buffer during system start and are aimed to (pre)define common, system
specific data objects (tools, weld data, move data ..), interfaces (printer, logfile ..)
etc. System modules are not included when a task is saved on a file. This means
that any update made to a system module will have impact on all existing (old)
tasks currently in, or later loaded to the task buffer. In any other sense there is no
difference between task and system modules; they can have any content.
While small applications usually are contained in a single task module (besides
the system module/s), larger applications may have a main task module that in
turn references routines and/or data contained in one or more other, library task
modules.

Task buffer

System modules

Disk (ram, hard, floppy)

Task modules (Task)

system module

main module

library module
library module

library module
library module

library module

system module
system module

system module
system module

module load/store

task load/store

xx1300000277

A librarymodule may for example define the interface of a physical or logical object
(gripper, feeder, counter etc.) or contain geometry data generated from a CAD
system or created online by digitizing (teach in).
One task module contains the entry procedure of the task. Running the task really
means that the entry routine is executed. Entry routines cannot have parameters.

Technical reference manual - RAPID kernel 121
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

9 Task modules
9.1 Introduction to task modules

9.2 Module declarations

Definition
Amodule declaration specifies the name, attributes and body of a module. A module
name hides any predefined object with the same name. Two different modules
may not share the same name. A module and a global module object (type, data
object or routine) may not share the same name. Module attributes provide a means
to modify some aspects of the systems treatment of a module when it is loaded to
the task buffer. The body of a module declaration contains a sequence of data
declarations followed by a sequence of routine declarations.

<module declaration> ::=

MODULE <module name> [<module attribute list>]

<type definition list>

<data declaration list>

<routine declaration list>

ENDMODULE

<module name> ::= <identifier>

<module attribute list> ::= '(' <module attribute> { ',' <module
attribute> } ')'

<module attribute> ::=

SYSMODULE

| NOVIEW

| NOSTEPIN

| VIEWONLY

| READONLY

<routine declaration list> ::= { <routine declaration> }

<type definition list> ::= { <type definition> }

<data declaration list> ::= { <data declaration> }

Module attributes
The module attributes have the following meaning:

If specified, the module...Attribute

is a system module, otherwise a task moduleSYSMODULE

(it is source code) cannot be viewed (only executed)NOVIEW

cannot be entered during stepwise executionNOSTEPIN

cannot be modifiedVIEWONLY

cannot be modified, but the attribute can be removedREADONLY

An attribute may not be specified more than once. If present, attributes must be
specified in table order (see above). The specification of noview excludes nostepin,
viewonly, and readonly (and vice versa). The specification of viewonly excludes
readonly (and vice versa).

Continues on next page
122 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

9 Task modules
9.2 Module declarations

Example
The following three modules could represent a (very simple) task.

MODULE prog1(SYSMODULE, VIEWONLY)

PROC main()

! init weldlib

initweld;

FOR i FROM 1 TO Dim(posearr,1) DO

slow posearr{i};

ENDFOR

ENDPROC

PROC slow(pose p)

arcweld p \speed := 25;

ENDPROC

ENDMODULE

MODULE weldlib

LOCAL VAR welddata w1 := sysw1;

! weldlib init procedure

PROC initweld()

! override speed

w1.speed := 100;

ENDPROC

PROC arcweld(pose position \ num speed | num time)

...

ENDPROC

ENDMODULE

MODULE weldpath ! (CAD) generated module

CONST pose posearr{768} := [[[234.7, 1136.7, 10.2], [1, 0, 0,
0]], ... [[77.2, 68.1, 554.7], [1, 0, 0, 0]]];

ENDMODULE

Technical reference manual - RAPID kernel 123
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

9 Task modules
9.2 Module declarations

Continued

9.3 System modules

Definition
System modules are used to (pre)define system specific data objects (tools, weld
data, move data ..), interfaces (printer, logfile ..) etc. Normally, system modules
are automatically loaded to the task buffer during system start.
For example:

MODULE sysun1(SYSMODULE)

! Provide predefined variables

VAR num n1 := 0;

VAR num n2 := 0;

VAR num n3 := 0;

VAR pos p1 := [0, 0, 0];

VAR pos p2 := [0, 0, 0];

...

! Define channels - open in init function

VAR channel printer;

VAR channel logfile;

...

! Define standard tools

PERS pose bmtool := [...

! Define basic weld data records

PERS wdrec wd1 := [...

! Define basic move data records

PERS mvrec mv1 := [...

! Define home position - Sync. Pos. 3

PERS robtarget home := [...

! Init procedure

LOCAL PROC init()

Open\write, printer, "/dev/lpr";

Open\write, logfile, "/usr/pm2/log1"... ;

ENDPROC

ENDMODULE

The selection of system module/s is a part of system configuration.

124 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

9 Task modules
9.3 System modules

9.4 Nostepin modules

General
By setting the argument NOSTEPIN on the module, stepwise execution of the
RAPID program will not step into the routine. The RAPID code of the routine will
not be visible to the user.

Modifying positions in nostepin modules
When stepping the program, the program execution stops before all move
instructions, but it is only possible to modify positions that are declared as
arguments to the routine. The argument will be highlighted in the program editor
and the ModPos button becomes active.

BehaviorArguments

The program will stop when the whole routine is ex-
ecuted. It is then possible to modify the position of the
robtarget.

One robtarget as argument to the
routine

The program will stop before the execution of the
second move instruction. It is then possible to modify
the position of the first robtarget.

Two or more robtarget as argu-
ments to the routine

The program will stop before the execution of the third
move instruction. It is then possible to modify the po-
sition of the second robtarget.
Finally, the program will stop when the whole routine
is executed. It is then possible to modify the position
of the last robtarget.

Note

It is not possible to modify positions that are declared inside the nostepin module,
nor when using Offs and RelTool functions on positions that are declared as
arguments to the routine.

Example
MODULE My_Module(NOSTEPIN)

PROC MoveSquare(robtarget pos1, robtarget pos2, robtarget pos3)

MoveJ pos1,v500,fine,tool0;

!Before the next move instruction is run, the execution is stopped
when stepping

!Now you can modify the first position pos1

MoveJ pos2,v500,fine,tool0;

!Before the next move instruction is run, the execution is stopped
when stepping

!Now you can modify the second position pos2

MoveJ pos3,v500,fine,tool0;

!The third and last position pos3 can be modified when the whole
procedure has been run

ENDPROC

ENDMODULE

Technical reference manual - RAPID kernel 125
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

9 Task modules
9.4 Nostepin modules

This page is intentionally left blank

10 Syntax summary
Summary

Each rule, or group of rules, are prefixed by a reference to the section where the
rule is introduced.

Character set on page 19
<character> ::= -- ISO 8859-1 (Latin-1)--

<newline> ::= -- newline control character --

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

<letter> ::= <upper case letter> | <lower case letter>

<upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | Ð | Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | Ý | Þ | ß

<lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | ß | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | ý | þ | ÿ

Identifiers on page 21
<identifier> ::= <ident> | <ID>

<ident> ::= <letter> {<letter> | <digit> | '_'}

Numerical literals on page 23
<num literal> ::=

<integer> [<exponent>]

| <decimal integer>) [<exponent>]

| <hex integer>

| <octal integer>

| <binary integer>

| <integer> '.' [<integer>] [<exponent>]

| [<integer>] '.' <integer> [<exponent>]

<integer> ::= <digit> {<digit>

<decimal integer> ::= '0' ('D' | 'd') <integer>

<hex integer> ::= '0' ('X' | 'x') <hex digit> {<hex digit>}

<octal integer> ::= '0' ('O' | 'o') <octal digit> {<octal digit>}

<binary integer> ::= '0' ('B' | 'b') <binary digit> {<binary digit>}

<exponent> ::= ('E' | 'e') ['+' | '-'] <integer>

Bool literals on page 24
<bool literal> ::= TRUE | FALSE

Continues on next page
Technical reference manual - RAPID kernel 127
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary

String literals on page 25
<string literal> ::= '"' { <character> | <character code> } '"'

<character code> ::= '\' <hex digit> <hex digit>

Comments on page 28
<comment> ::= '!' { <character> | <tab> } <newline>

Data types on page 29
<type definition> ::=

[LOCAL] (<record definition>

| <alias definition>)

| <comment>

| <DN>

<record definition> ::=

RECORD <identifier>

<record component list>

ENDRECORD

<record component list> ::=

<record component definition>

| <record component definition> <record component list>

<record component definition> ::=

<data type> <record component name> ';'

<alias definition> ::=

ALIAS <data type> <identifier> ';'

<data type> ::= <identifier>

Data declarations on page 40
<data declaration> ::=

[LOCAL]

(<variable declaration>

| <persistent declaration>

| <constant declaration>)

| TASK

(<variable declaration>

| <persistent declaration>)

| <comment>

| <DDN>

Variable declarations on page 45
<variable declaration> ::=

VAR <data type> <variable definition> ';'

<variable definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}'] [':=' <constant
expression>]

<dim> ::= <constant expression>

Persistent declarations on page 46
<persistent declaration> ::=

PERS <data type> <persistent definition> ';'

<persistent definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}'] [':=' <literal
expression>]

Continues on next page
128 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

Note

The literal expression may only be omitted for system global persistents.

Constant declarations on page 48
<constant declaration> ::=

CONST <data type> <constant definition> ';'

<constant definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}'] ':=' <constant
expression>

<dim> ::= <constant expression>

Expressions on page 49
<expression> ::=

<expr>

| <EXP>

<expr> ::=

[NOT] <logical term> { (OR | XOR) <logical term> }

<logical term> ::=

<relation> { AND <relation> }

<relation> ::=

<simple expr> [<relop> <simple expr>]

<simple expr> ::=

[<addop>] <term> { <addop> <term> }

<term> ::=

<primary> { <mulop> <primary> }

<primary> ::=

<literal>

| <variable>

| <persistent>

| <constant>

| <parameter>

| <function call>

| <aggregate>

| '(' <expr> ')'

<relop> ::= '<' | '<=' | '=' | '>' | '>=' | '<>'

<addop> ::= '+' | '-'

<mulop> ::= '*' | '/' | DIV | MOD

Constant expressions on page 51
<constant expression> ::= <expression>

Literal expressions on page 52
<literal expression> ::= <expression>

Conditional expressions on page 53
<conditional expression> ::= <expression>

Literals on page 54
<literal> ::=

<num literal>

| <string literal>

| <bool literal>

Continues on next page
Technical reference manual - RAPID kernel 129
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

Variables on page 55
<variable> ::=

| <entire variable>

| <variable element>

| <variable component>

<entire variable> ::= <ident>

<variable element> ::= <entire variable> '{' <index list> '}'

<index list> ::= <expr> { ',' <expr> }

<variable component> ::= <variable> '.' <component name>

<component name> ::= <ident>

Persistents on page 57
<persistent> ::=

<entire persistent>

| <persistent element>

| <persistent component>

Constants on page 58
<constant> ::=

<entire constant>

| <constant element>

| <constant component>

Parameters on page 59
<parameter> ::=

<entire parameter>

| <parameter element>

| <parameter component>

Aggregates on page 60
<aggregate> ::= '[' <expr> { ',' <expr> } ']'

Function calls on page 61
<function call> ::=

<function> '(' [<function argument list>] ')'

<function> ::= <identifier>

<function argument list> ::=

<first function argument> { <function argument>

<first function argument> ::=

<required function argument>

| <optional function argument>

| <conditional function argument>

<function argument> ::=

',' <required function argument>

| <optional function argument>

| ',' <optional function argument>

| <conditional function argument>

| ',' <conditional function argument>

<required function argument> ::= [<ident> ':='] <expr>

<optional function argument> ::= '\' <ident> [':=' <expr>]

<conditional function argument> ::='\' <ident> '?' <parameter>

Continues on next page
130 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

Statements on page 65
<statement> ::=

<simple statement>

| <compound statement>

| <label>

| <comment>

| <SMT>

<simple statement> ::=

<assignment statement>

| <procedure call>

| <goto statement>

| <return statement>

| <raise statement>

| <exit statement>

| <retry statement>

| <trynext statement>

| <connect statement>

<compound statement> ::=

<if statement>

| <compact if statement>

| <for statement>

| <while statement>

| <test statement>

Statement lists on page 67
<statement list> ::= { <statement> }

Label statement on page 68
<label> ::= <identifier> ':'

Assignment statement on page 69
<assignment statement> ::=

<assignment target> ':=' <expression> ';'

<assignment target> ::=

<variable>

| <persistent>

| <parameter>

| <VAR>

Procedure call on page 70
<procedure call> ::=

<procedure> [<procedure argument list>] ';'

<procedure> ::=

<identifier>

| '%' <expression> '%'

<procedure argument list> ::=

<first procedure argument> { <procedure argu¬ment> }

<first procedure argument> ::=

<required procedure argument>

| <optional procedure argument>

| <conditional procedure argument>

| <ARG>

Continues on next page
Technical reference manual - RAPID kernel 131
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

<procedure argument> ::=

',' <required procedure argument>

| <optional procedure argument>

| ',' <optional procedure argument>

| <conditional procedure argument>

| ',' <conditional procedure argument>

| ',' <ARG>

<required procedure argument> ::=

[<identifier> ':='] <expression>

<optional procedure argument> ::=

'\' <identifier> [':=' <expression>]

<conditional procedure argument> ::=

'\' <identifier> '?' (<parameter> | <VAR>)

The Goto statement on page 72
<goto statement> ::= GOTO <identifier> ';'

The Return statement on page 73
<return statement> ::= RETURN [<expression>] ';'

The Raise statement on page 74
<raise statement> ::= RAISE [<error number>] ';'

<error number> ::= <expression>

The Exit statement on page 75
<exit statement> ::= EXIT ';'

The Retry statement on page 76
<retry statement> ::= RETRY ';'

The Trynext statement on page 77
<trynext statement> ::= TRYNEXT ';'

The Connect statement on page 78
<connect statement> ::=

CONNECT <connect target> WITH <trap> ';'

<connect target> ::=

<variable>

| <parameter>

| <VAR>

<trap> ::= <identifier>

The IF statement on page 79
<if statement> ::=

IF <conditional expression> THEN

<statement list>

{ ELSEIF <conditional expression> THEN

<statement list>

| <EIT> }

[ELSE

<statement list>]

ENDIF

Continues on next page
132 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

The compact IF statement on page 80
<compact if statement> ::=

IF <conditional expression> (<simple statement> | <SMT>)

The For statement on page 81
<for statement> ::=

FOR <loop variable> FROM <expression> TO <expression> [STEP
<expression>] DO <statement list> ENDFOR

<loop variable> ::= <identifier>

The While statement on page 82
<while statement> ::=

WHILE <conditional expression> DO <statement list> ENDWHILE

The Test statement on page 83
<test statement> ::=

TEST <expression>

{ CASE <test value> { ',' <test value> } ':'

<statement list>) | <CSE> }

[DEFAULT ':'<statement list>]

ENDTEST

<test value> ::= <constant expression>

Routine declarations on page 85
<routine declaration> ::=

[LOCAL] (<procedure declaration> | <function declaration> |
<trap declaration>)

| <comment> | <RDN>

Parameter declarations on page 86
<parameter list> ::=

<first parameter declaration> { <next parameter declaration> }

<first parameter declaration> ::=

<parameter declaration>

| <optional parameter declaration>

| <PAR>

<next parameter declaration> ::=

',' <parameter declaration>

| <optional parameter declaration>

| ',' <optional parameter declaration>

| ',' <PAR>

<optional parameter declaration> ::=

'\' (<parameter declaration> | <ALT>) { '|' (<parameter
declaration> |

<ALT>) }

<parameter declaration> ::=

[VAR | PERS | INOUT] <data type> <identifier> ['{' ('*' {
',' '*' }) |

<DIM> '}']

| 'switch' <identifier>

Procedure declarations on page 90
<procedure declaration> ::=

PROC <procedure name>

Continues on next page
Technical reference manual - RAPID kernel 133
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

'(' [<parameter list>] ')'

<data declaration list>

<statement list>

[BACKWARD <statement list>]

[ERROR [<error number list>] <statement list>]

[UNDO <statement list>]

ENDPROC

<procedure name> ::= <identifier>

<data declaration list> ::= { <data declaration> }

Function declarations on page 91
<function declaration> ::=

FUNC <data type>

<function name>

'(' [<parameter list>] ')'

<data declaration list>

<statement list>

[ERROR [<error number list>] <statement list>]

[UNDO <statement list>]

ENDFUNC

<function name> ::= <identifier>

Trap declarations on page 92
<trap declaration> ::=

TRAP <trap name>

<data declaration list>

<statement list>

[ERROR [<error number list>] <statement list>]

[UNDO <statement list>]

ENDTRAP

<trap name> ::= <identifier>

<error number list> ::=

'(' <error number> { ',' <error number>} ')'

<error number> ::=

<num literal>

| <entire constant>

| <entire variable>

| <entire persistent>

Module declarations on page 122
<module declaration> ::=

MODULE <module name> [<module attriutelist>]

<type definition list>

<data declaration list>

<routine declaration list>

ENDMODULE

<module name> ::= <identifier>

<module attribute list> ::=

'(' <module attribute> { ',' <module attribute> } ')'

<module attribute> ::=

SYSMODULE

| NOVIEW

Continues on next page
134 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

| NOSTEPIN

| VIEWONLY

| READONLY

<type definition list> ::= { <type definition> }

<routine declaration list> ::= { <routine declaration> }

Technical reference manual - RAPID kernel 135
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

10 Syntax summary
Continued

This page is intentionally left blank

11 Built-in routines
General

For more information on the ref access mode, see Function calls on page 61.

Note

Note that RAPID routines cannot have REF parameters.

The marker anytype indicates that the argument can have any data type.

Note

Note that anytype is just a marker for this property and should not be confused
with a "real" data type. Also note that RAPID routines cannot be given anytype

parameters.

Dim

The Dim function is used to get the size of an array (datobj). It returns the number
of array elements of the specified dimension.
FUNC num Dim (REF anytype datobj, num dimno)

Legal dimno values:

DescriptionValue

Select first array dimension1

Select second array dimension2

Select third array dimension3

Present

The Present function is used to test if the argument (datobj) is present, see
Parameter declarations on page 86. It returns FALSE if datobj is a not present
optional parameter, TRUE otherwise.
FUNC bool Present (REF anytype datobj)

Break

The Break (breakpoint) procedure causes a temporary stop of program execution.
Break is used for RAPID program code debugging purposes.
PROC Break ()

IWatch

The IWatch procedure activates the specified interrupt (ino). The interrupt can
later be deactivated again using the ISleep procedure.
PROC IWatch (VAR intnum ino)

Continues on next page
Technical reference manual - RAPID kernel 137
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

11 Built-in routines

ISleep

The ISleep procedure deactivates the specified interrupt (ino). The interrupt can
later be activated again using the IWatch procedure.
PROC ISleep (VAR intnum ino)

IsPers

The IsPers function is used to test if a data object (datobj) is (or is an alias for) a
persistent
(see Parameter declarations on page 86). It returns TRUE in that case, FALSE
otherwise.
FUNC bool IsPers (INOUT anytype datobj)

IsVar

The IsVar function is used to test if a data object (datobj) is (or is an alias for) a
variable (see Parameter declarations on page 86). It returns TRUE in that case,
FALSE otherwise.
FUNC bool IsVar (INOUT anytype datobj)

138 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

11 Built-in routines
Continued

12 Built-in data objects
Errors

The following table describes the errors that belongs to the kernel.
For a list of all errors, both kernel errors and RAPID errors, see Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData
type

Object
type

Object name

most recent error numbererrnumvariable iERRNO

most recent interruptintnumvariable iINTNO

variable and trap routine already connectederrnumconstantERR_ALRDYCNT

duplicated present conditional argumenterrnumconstantERR_ARGDUPCND

argument is not a persistent referenceerrnumconstantERR_ARGNOTPER

argument is not a variable referenceerrnumconstantERR_ARGNOTVAR

procedure call error (syntax, not procedure)
at run time (late binding)

errnumconstantERR_CALLPROC

CONNECT target is not a variable referenceerrnumconstantERR_CNTNOTVAR

division by zeroerrnumconstantERR_DIVZERO

cannot execute placeholdererrnumconstantERR_EXECPHR

missing return valueerrnumconstantERR_FNCNORET

array dimension out of rangeerrnumconstantERR_ILLDIM

illegal orientation valueerrnumconstantERR_ILLQUAT

error number in RAISE out of rangeerrnumconstantERR_ILLRAISE

If trying to deactivate a safe interrupt tempor-
arily with ISleep.

errnumconstantERR_INOISSAFE

no more interrupt number availableerrnumconstantERR_INOMAX

integer value too largeerrnumconstantERR_MAXINTVAL

data object is not an arrayerrnumconstantERR_NOTARR

mixed array dimensionserrnumconstantERR_NOTEQDIM

not integer valueerrnumconstantERR_NOTINTVAL

parameter not presenterrnumconstantERR_NOTPRES

array index out of boundserrnumconstantERR_OUTOFBND

reference to unknown entire data objecterrnumconstantERR_REFUNKDAT

reference to unknown functionerrnumconstantERR_REFUNKFUN

reference to unknown procedure at linking
time or at run time (late binding)

errnumconstantERR_REFUNKPRC

reference to unknown traperrnumconstantERR_REFUNKTRP

string too longerrnumconstantERR_STRTOOLNG

unknown interrupt numbererrnumconstantERR_UNKINO
i Read only, can only be updated by the system, not by a RAPID program.

Technical reference manual - RAPID kernel 139
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

12 Built-in data objects

This page is intentionally left blank

13 Built-in objects
Definition

There are three groups of built-in objects:
• Language kernel reserved objects
• Installed objects
• User installed objects

Language kernel reserved objects are part of the system and cannot be removed
(or left out in the configuration). Objects in this group are the instruction Present,
the variables intno, errno, and much more. The set of objects in this group is
the same for all tasks (multitasking) and installations.
Most of the installed objects are installed at the first system start (or when using
the restart mode Reset RAPID) by the internal system configuration and cannot
be removed (for example the instructions MoveL, MoveJ ...). Data objects
corresponding to I/O signals, mechanical units and cameras are installed according
to the user configuration at each system start.
The last group user installed objects are objects that are defined in RAPID modules
and installed according to the user configuration at the first system start or when
using the restart mode Reset RAPID.
The objects could be any RAPID object, that is procedure, function, record, record
component, alias, const, var, or pers. Object values of pers and var could be
changed, but not the code itself, because of that a modpos of a built in constant
declared robtarget is not allowed.
The built-in RAPID code can never be viewed.

Object scope
The scope of object denotes the area in which the object is visible. A built in object
is visible at all other levels in the task, if not the same object name is used for
another object at a level between the use of the reference and the built-in level.
The following table shows the order of scope levels lookup, for a object referred
from different places.

Built-in objectsGlobal in the
program (global
declared in one
module)

Own module
(local declared)

Own routineThe object is
used in a:

4321routine declared
in a user or sys-
tem module

321data or routine
declaration in a
user or system
module

321routine declared
in a user installed
module

Continues on next page
Technical reference manual - RAPID kernel 141
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

13 Built-in objects

Built-in objectsGlobal in the
program (global
declared in one
module)

Own module
(local declared)

Own routineThe object is
used in a:

21data or routine
declaration in a
user installed
module

1installed object
(only for system
developers)

There are ways to bind a reference in runtime to objects (not functions) outside its
scope. For data object see the description of SetDataSearch in Technical
reference manual - RAPID Instructions, Functions and Data types. For procedures
use late binding with lookup, described in Procedure call on page 70.

The value of a built-in data object durability
The init value of a built-in PERS or VAR object is set when the object is installed.
It could though be changed from the normal program. The object will always keep
its latest value even if the normal program is reset, erased, or replaced. The only
way to re-initialize the object is to reset the system by using the restart mode Reset
RAPID or to change the configuration (then an automatic Reset RAPID will be
performed).

Note

The value of built in VAR object with a separate value per task, will be reset at
PP to Main. ERRNO is an example of a built in VAR object with a separate value
for each task.

Note

A built-in PERS object is not replacing its init value with its latest as a normal
PERS object do.

Continues on next page
142 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

13 Built-in objects
Continued

The way to define user installed objects
The only way to install a user installed object is to define the object in a RAPID
module, create an new instance in the system parameter Task modules with the
file path to that module. The attribute Storage must then be set to Built-in. (see
system parameter, type Controller in Technical reference manual - System
parameters). There are also an attribute for Task modules named TextResource
that is only valid for built-in objects, this makes it possible to use national language
or site depended names in the RAPID code for identifiers, without changing the
code itself. In the normal case that attribute should not be changed, but for the
advanced users see Text files on page 149.

Note

All used references in a built-in module must be known to the system at the time
for that module installation.

Technical reference manual - RAPID kernel 143
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

13 Built-in objects
Continued

This page is intentionally left blank

14 Intertask objects
Definition

There are two groups of intertask objects:
• installed shared object
• system global persistent data object

An installed shared object is configured as shared for all tasks. This make it possible
to save memory by reusing RAPID code for more than one task. Its also the only
way to share non-value and semi-value data object, see Built-in data objects on
page139. The object could be any RAPID object, that is procedure, function, const,
var, or pers.
The current value of a system global persistent data object is shared by all tasks
where it is declared with the same name and type.

Symbol levels
A symbol in RAPID could be found at different levels, in a routine, in a module
(local), in the program of one task (in one module and defined as global) or at the
system level. Installed shared objects are on the system level.
The system level is departed into two parts, a shared part and a task part. Objects
in the task part are local to that task, but objects in the shared part are global to
all task.
The installed shared part is physically existing in task 0 (the shared task), but
existing logical in each task.

shared part

system level

TASK 0

task part

system level

TASK 1

global level

module level

routine level

global level

module level

routine level

task part

system level

TASK N...

Symbol

lookup

direction

xx1300000278

The symbol search will start from that position (level) where the object is referred
and then, if not found, in nearest level above and so on. See the Symbol lookup
direction arrow in the preceding figure.

Continues on next page
Technical reference manual - RAPID kernel 145
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

14 Intertask objects

Data object handling
Even if the definition is shared for a data object the value of it could be local in the
task. That is the fact for the installed system variables errno, intno, and all stack
allocated objects (object defined in a routine). All other data objects share the value
with other tasks. This fact will demand a careful manipulation and reading of those
values.
If the object has an atomic type (num, bool ...) there is no problem. But if not, make
sure that the total object is read/manipulated without any interfering from another
task. For example if the object is of a record type and each component is assigned
one by one, a reading (between the setting of two record components) from another
task will get an inconsistent record.
Also remember that a routine could be called from more than one task at the same
time and therefore should be reentrant, that is, use local stack allocated object
(parameters and data object declared in the routine).

The way to define installed shared object
The only way to install an installed shared object is to define the object in a RAPID
module, create a new instance of Task/Automatic loading of Modules in the system
parameter with the file path to the module. The attribute shared must be set to
YES. See system parameter domain Controller in Technical reference
manual - System parameters.

System global persistent data object
The current value of a system global persistent data object (for example, not
declared as task or local) is shared by all tasks where it is declared with the same
name and type. The object will still exist even if one module where it is declared
is removed as long as that module does not contain the last declaration for that
object. A persistent object could only be of value type.
A declaration can specify an initial value to a persistent object, but it will only set
the initial value of the persistent when the module is installed or loaded for the first
time.
Example of usage (several initial values):
Task 1: PERS tooldata tool1 := [...];
Task 2: PERS tooldata tool1 := [...];
Note that the current value of tool1 will not be updated with the initial value of tool1
in the second loaded module. This is a problem if the initial value differs in the two
tasks. This is solved by specifying initial value in one declaration only.
Example of usage (one initial value):
Task 1: PERS tooldata tool1 := [...];
task 2: PERS tooldata tool1;
After load of the two tasks the current value of tool1 is guaranteed to be equal to
the initial value of the declaration in task 1 regardless of the load order of the
modules. It is recommended to use this technique for types such as tooldata,
wobjdata, and loaddata. Specify initial value along with data declaration in the

Continues on next page
146 Technical reference manual - RAPID kernel

3HAC050946-001 Revision: J
© Copyright 2004-2022 ABB. All rights reserved.

14 Intertask objects
Continued

motiontask and omit initial value in other tasks. It is also possible to specify no
initial value at all. Example of usage (no initial value):
Task 1: PERS num state;
Task 2: PERS num state;
The current value of state will be initialized like a variable without initial value, in
this case state will be equal to zero. This case is useful for intertask communication
where the state of the communication should not be saved when the program is
saved or at backup.

Technical reference manual - RAPID kernel 147
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

14 Intertask objects
Continued

This page is intentionally left blank

15 Text files
Definition

This is a most effective tool that should be used when the demand for the application
includes:

• Easily changeable texts, for example help and error texts (the customer
should also be able to handle these files).

• Memory saving, text strings in a text file use a smaller amount of memory
than RAPID strings.

In a text file you can use ASCII strings, with the help of an off-line editor, and fetch
them from the RAPID code. The RAPID code should not be changed in any way
even if the result from the execution may look totally different.

Syntax for a text file in .xml format
The application programmer must create one text file for each language to be
supported.
The text file is organized as:

<?xml version="1.0" encoding="ISO-8859-1"?>

<Resource Language="en" Name="text file">

<Text Name="1">

<Value>This is text string 1</Value>

<Comment>This is a comment</Comment>

</Text>

<Text Name="1">

<Value>This is text string 2</Value>

<Comment>This is a comment</Comment>

</Text>

Retrieving text during program execution
It is possible to retrieve a text string from the RAPID code. The functions TextGet
and TextTabGet are used for this, see the descriptions of these in Technical
reference manual - RAPID Instructions, Functions and Data types.

Example of a module: write_from_file.mod
MODULE write_from_file

VAR num text_res_no;

VAR string text1;

PROC main()

IF TextTabFreeToUse("ACTION_TXRES") THEN

TextTabInstall "HOME:/text_file.xml";

ENDIF

text_res_no := TextTabGet("ACTION_TXRES");

text1 := TextGet(text_res_no, 2);

TPWrite text1; ! The word "Stop" will be printed.

ENDPROC

Continues on next page
Technical reference manual - RAPID kernel 149
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

15 Text files

ENDMODULE

Example of a text file: text_file.xml
<?xml version="1.0" encoding="ISO-8859-1"?>

<Resource Language="en" Name="text file">

<Text Name="1">

<Value>Go</Value>

<Comment>Start the activity</Comment>

</Text>

<Text Name="2">

<Value>Stop</Value>

<Comment>Stop the activity</Comment>

</Text>

<Text Name="3">

<Value>Wait</Value>

</Text>

<Text Name="4">

<Value>Call_service_man</Value>

<Comment>Get help</Comment>

</Text>

<Text Name="5">

<Value>Restart</Value>

<Comment>Restart the controller</Comment>

</Text>

</Resource>

Loading text files
Loading of the text file into the system can be done with the RAPID instruction
TextTabInstall and the function TextTabFreeToUse.

150 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

15 Text files
Continued

16 Storage allocations for RAPID objects
Definition

All RAPID programs stored on PC or controller have ASCII format. At loading of
RAPID program from PC/controller memory into the program memory (internal
format), the storage of the program needs about four times more memory space.
For memory optimization of RAPID programs, the storage allocation in program
memory (internal format in bytes) for some common instructions, data etc. are
specified below.
For other instructions or data the storage allocation can be read from the operating
message 10040 after loading of a program or program module.

Storage allocation for modules, routines, program flow, and other basic instructions

Storage in bytesInstruction or data

1732New empty module: MODULE module1 ... ENDMODULE

224New empty procedure without parameters: PROC proc1() ... END-
PROC

224Procedure call without arguments: proc1;

156Module numeric variable declaration: VAR num reg1;

44Numeric assignment: reg1:=1;

124Compact IF: IF reg1=1 proc1;

184IF statement: IF reg1=1 THEN proc1; ELSE proc2; ENDIF

88Waits a given amount of time: WaitTime 1;

36 (+4)Comments: ! 0 - 7 chars (for every additional 4 chars)

332Module string constant declaration with 0-80 chars init string value:
CONST string string1 := "0-80 characters";

344Module string variable declaration with 0-80 chars init string value:
VAR string string1 := "0-80 characters";

236Module string variable declaration: VAR string string1;

52String assignment: string1:= "0-80 characters";

176Write text on FlexPendant: TPWrite "0-80 characters";

Storage allocation for Move instructions

Storage in bytesInstruction or data

292Module robtarget constant declaration: CONST robtarget p1 :=
[...];

244Robot linearly move: MoveL p1,v1000,z50,tool1;

312Robot linearly move: MoveL *,v1000,z50,tool1;

432Robot circular move: MoveC *,*,v1000,z50,tool1;

Continues on next page
Technical reference manual - RAPID kernel 151
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

16 Storage allocations for RAPID objects

Storage allocation for I/O instructions

Storage in bytesInstruction or data

88Set digital output: Set do1;

140Set digital output: SetDO do1,1;

140Wait until one digital input is high: WaitDI di1,1;

220Wait until two digital inputs are high: WaitUntil di1=1 AND
di2=1;

152 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

16 Storage allocations for RAPID objects
Continued

Index
! character, 28

A
aggregate, 60
alias data type, 15
alias type

definition, 36
AND, 64
atomic data type, 15
atomic type

definition, 31

B
Backus-Naur Form, 17
backward execution

definition, 14
bool, 15

definition, 24
bool type

definition, 31
built-in alias data type

definition, 15
built-in atomic data type

definition, 15
built-in record data type

definition, 15
built-in routine, 12

C
comment

definition, 28
conditional expression, 53
constant

definition, 48
expression, 51
references, 58

constant expressions, 51

D
data declarations, 40
data object

definition, 13
scope, 43
storage class, 44

data objects
definition, 40

data type
definition, 14, 29
value class, 15

data types
alias, 36
atomic, 31
bool, 31
dnum, 31
equal, 39
errnum, 36
intnum, 36
num, 31
orient, 34
pos, 34
pose, 34
record, 33
scope rules, 30
string, 32

delimiter
definition, 26

dnum type
definition, 31

E
EBNF, 17
equal type

definition, 39
errnum type

definition, 36
error recovery

definition, 14
error types, 18

F
function

definition, 12

I
identifiers

definition, 21
installed data types

definition, 15
installed routine, 12
interrupt

definition, 14
intnum type

definition, 36
ISO 8859-1, 19

L
literal expression, 52, 54

M
module

definition, 12
task module, 121

N
non-value data type, 15
NOT, 64
num, 15
num type

definition, 31

O
object value type, 15
OR, 64
orient, 15
orient type

definition, 34

P
parameter

references, 59
persistent

declaration, 46
references, 57

placeholder
definition, 16, 27

pos, 15
pose, 15
pose type

definition, 34
pos type

definition, 34
predefined routine

Technical reference manual - RAPID kernel 153
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

Index

definition, 12
procedure

call, 70
declarations, 90
definition, 12

R
record data type, 15
record types

definition, 33
routine

declaration, 85
definition, 12

S
scope

data object, 43
scope rules

data types, 30
semi-value data type, 15
statement

assignment, 69
definition, 13, 65
lists, 67
terminating, 66

storage class
data object, 44

string, 15
definition, 25

string type
definition, 32

syntax rules, 9
system module, 12

T
task

definition, 12
task buffer, 12
task module, 12

definition, 121
terminating

statement, 66
token

definition, 20
trap routine

definition, 12

U
undo execution

definition, 14
user-defined data types

definition, 15
user routine

definition, 12

V
value class, 15
variable

declaration, 45
references, 55

X
XOR, 64

154 Technical reference manual - RAPID kernel
3HAC050946-001 Revision: J

© Copyright 2004-2022 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
50
94
6-
0
0
1,
R
ev

J,
en

© Copyright 2004-2022 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	How to read this manual
	1 Introduction
	1.1 Design objectives
	The RAPID concept

	1.2 Language summary
	Tasks and modules
	Routines
	User routines
	Predefined routines
	Data objects
	Statements
	Backward execution
	Error recovery
	Undo execution
	Interrupts
	Data types
	Built-in data types
	Installed data types
	User-defined data types
	Placeholders

	1.3 Syntax notation
	Context-free syntax

	1.4 Error classification
	Types of errors
	Static errors
	Execution errors

	2 Lexical elements
	2.1 Character set
	Definition
	Supported symbols of ISO 8859-1

	2.2 Lexical units
	Definition
	Limitations

	2.3 Identifiers
	Definition
	Limitations

	2.4 Reserved words
	Definition

	2.5 Numerical literals
	Definition
	Limitations
	Example

	2.6 Bool literals
	Definition

	2.7 String literals
	Definition
	Example

	2.8 Delimiters
	Definition

	2.9 Placeholders
	Definition

	2.10 Comments
	Definition
	Example
	Comments in a record

	2.11 Data types
	Definition
	Example
	Record definition
	Alias definition
	Definition for placeholder

	2.12 Scope rules for data types
	Definition

	2.13 The atomic data types
	Definition
	The type num
	Examples with num

	The type dnum
	Examples with dnum

	The type bool
	Examples with bool

	The type string
	Examples with string

	2.14 The record data types
	Definition
	Record definition
	Record value
	Assigning values to components
	Default domain
	Comments in a record
	The type pos
	Examples with pos

	The type orient
	Examples with orient

	The type pose
	Examples with pose

	2.15 The alias data types
	Definition
	Examples with alias

	The type errnum
	The type intnum

	2.16 Data type value classes
	Definition
	Value data type
	Non-value data type
	Semi-value data type
	Possible and impossible combinations of object usage and type value class

	2.17 Equal type
	Definition

	2.18 Data declarations
	Definition
	About persistent data objects
	Declarations and accessibility
	Examples

	2.19 Predefined data objects
	Definition

	2.20 Scope rules for data objects
	Definition
	Module data object
	Routine data object

	2.21 Storage class
	Definition

	2.22 Variable declarations
	Definition
	Declaring array variables
	Declaring value type variables
	Initial value for un-initialized variables

	2.23 Persistent declarations
	Definition
	Declaring array persistents
	Initial value for persistents
	Initial value for un-initalized persistents

	2.24 Constant declarations
	Definition
	Declaring array constants

	3 Expressions
	3.1 Introduction to expressions
	Definition
	Evaluation order

	3.2 Constant expressions
	Definition
	Examples

	3.3 Literal expressions
	Definition
	Examples

	3.4 Conditional expressions
	Definition
	Examples

	3.5 Literals
	Definition
	Examples

	3.6 Variables
	Definition
	Entire variable
	Variable element
	Variable component

	3.7 Persistents
	Definition

	3.8 Constants
	Definition

	3.9 Parameters
	Definition

	3.10 Aggregates
	Definition
	Data type for aggregates

	3.11 Function calls
	Definition
	Arguments
	Required arguments
	Optional or conditional arguments
	Parameter list

	3.12 Operators
	Definition
	Multiplication operators
	Addition operators
	Relational operators
	Logical operators

	4 Statements
	4.1 Introduction to statements
	Definition
	Simple or compound statements

	4.2 Statement termination
	Definition

	4.3 Statement lists
	Definition

	4.4 Label statement
	Definition
	Scope rules for labels

	4.5 Assignment statement
	Definition
	Examples

	4.6 Procedure call
	Definition
	Procedure name
	Late binding

	4.7 The Goto statement
	Definition

	4.8 The Return statement
	Definition
	Limitations

	4.9 The Raise statement
	Definition
	Error numbers

	4.10 The Exit statement
	Definition

	4.11 The Retry statement
	Definition

	4.12 The Trynext statement
	Definition

	4.13 The Connect statement
	Definition
	Prerequisites

	4.14 The IF statement
	Definition

	4.15 The compact IF statement
	Definition

	4.16 The For statement
	Definition

	4.17 The While statement
	Definition

	4.18 The Test statement
	Definition

	5 Routine declarations
	5.1 Introduction to routine declarations
	Definition
	Limitations

	5.2 Parameter declarations
	Definition
	Prerequisites
	Access modes
	Built-in routines
	Switch
	Arrays

	5.3 Scope rules for routines
	Definition
	Other scope rules

	5.4 Procedure declarations
	Definition
	Evaluation and termination
	Late binding

	5.5 Function declarations
	Definition
	Evaluation and termination

	5.6 Trap declarations
	Definition
	Evaluation and termination

	6 Backward execution
	6.1 Introduction to backward execution
	Definition
	Limitations

	6.2 Backward handlers
	Definition
	Limitations
	Procedures with no backward handler

	6.3 Limitations for Move instructions in a backward handler
	Limitations

	7 Error recovery
	7.1 Error handlers
	Definition
	ERRNO
	System error handler
	Errors raised by the program

	7.2 Error recovery with long jump
	Definition
	Execution levels
	Error recovery point
	Syntax
	Using error recovery with long jump
	Error recovery through execution level boundaries
	Additional information
	UNDO handler

	7.3 Nostepin routines
	Definition

	7.4 Asynchronously raised errors
	About asynchronously raised errors
	Two types of asynchronously raised errors
	Attempt to handle errors in the routine that called the move instruction
	Program example
	Description of the example

	What happens when a routine call is dropped?
	Program example
	Description of the example

	Example
	Error when PP is in write_log
	Error when execution of my_process has finished

	Nostepin move instructions and asynchronously raised errors
	UNDO handler

	7.5 The instruction SkipWarn
	Definition
	Example

	7.6 Motion error handling
	About motion error handling
	Example

	Functionality of motion error handling
	Example 1
	Example 2
	Example 3

	Limitations

	8 Interrupts
	Definition
	Interrupt recognition and response
	Editing interrupts
	Trap routines

	9 Task modules
	9.1 Introduction to task modules
	Definition

	9.2 Module declarations
	Definition
	Module attributes
	Example

	9.3 System modules
	Definition

	9.4 Nostepin modules
	General
	Modifying positions in nostepin modules
	Example

	10 Syntax summary
	Summary
	Character set on page
	Identifiers on page
	Numerical literals on page
	Bool literals on page
	String literals on page
	Comments on page
	Data types on page
	Data declarations on page
	Variable declarations on page
	Persistent declarations on page
	Constant declarations on page
	Expressions on page
	Constant expressions on page
	Literal expressions on page
	Conditional expressions on page
	Literals on page
	Variables on page
	Persistents on page
	Constants on page
	Parameters on page
	Aggregates on page
	Function calls on page
	Statements on page
	Statement lists on page
	Label statement on page
	Assignment statement on page
	Procedure call on page
	The Goto statement on page
	The Return statement on page
	The Raise statement on page
	The Exit statement on page
	The Retry statement on page
	The Trynext statement on page
	The Connect statement on page
	The IF statement on page
	The compact IF statement on page
	The For statement on page
	The While statement on page
	The Test statement on page
	Routine declarations on page
	Parameter declarations on page
	Procedure declarations on page
	Function declarations on page
	Trap declarations on page
	Module declarations on page

	11 Built-in routines
	General
	Dim
	Present
	Break
	IWatch
	ISleep
	IsPers
	IsVar

	12 Built-in data objects
	Errors

	13 Built-in objects
	Definition
	Object scope
	The value of a built-in data object durability
	The way to define user installed objects

	14 Intertask objects
	Definition
	Symbol levels
	Data object handling
	The way to define installed shared object
	System global persistent data object

	15 Text files
	Definition
	Syntax for a text file in .xml format
	Retrieving text during program execution
	Example of a module: write_from_file.mod
	Example of a text file: text_file.xml

	Loading text files

	16 Storage allocations for RAPID objects
	Definition
	Storage allocation for modules, routines, program flow, and other basic instructions
	Storage allocation for Move instructions
	Storage allocation for I/O instructions

	Index

